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SLENDER-BODY THEORY BASED ON APPROXIMATE SOLUTION

OF THE TRANSONIC FLOW EQUATION

By JoltN R. SPREITER and ALBERTA Y. ALKSNE

SUMMARY

Approximate solutions of the nonlinear equations
of the small disturbance theory of transonic flow are

found for the pressure di._'tribution on pointed slender

bodies of revolution for flows with .free-stream _'l[act_

nu_nber 1, and for flows that are either purely sub-

sonic or purely supersonic. Tltese results are ob-

tained by application _ a method ba_'ed on local
linearization that was introduced recently in the

analy._is q/ similar problems in two-dimensional

flows. The theory is deceloped.for bodies of arbitrary

,_'hape, and specific results are gi_,en jor cone-cylinders

and for parabolic-arc bodies at zero angle of attack.

All results are compared eith.er with existing theo-
retical results or with experimental data.

INTRODUCTION

This paper is concerned with the prediction of

the pressure distribution on slender pointed bodies

of revolution in flight at zero angle of attack at

high subsonic Math numbers, at low supersonic
.Xfach numbers, and at h[ach numbers near I.

The solution of such problems is of interest not
only because of the frequent use of bodies of revolu-

tion in practical applications but also because

knowledge of the aerodynamic properties of a

body of revolution in axisymmctric flow taken to-

gether with the transonic area rule and equivalence

rule described in references 1, 2, 3, and elsewhere
permits the ready ealculation of the aerodynamic

properties of a wide class of wings, bodies, wing-
body combinations, etc., having the same Iongi-
tudinal distribution of cross-section area as the

body of revolution.

The analysis is based throughout on the snmll

disturbance theory of transonic flow. This the-

ory, at least as formulated in this paper and in

several earlier papers of the present authors, is not

restrictive in its range of applicability as might be
inferred from its name, but is equally applicable

to subsonic and supersonic flows. It is, moreover,

the simplest theory proposed to date that is

capable of yielding reliable results throughout this

entire speed range. Difficulties arise in the solu-

tion of the equations of transonic flow theory,

however, because the governing partial differential

equation is nonlinear and of mixed elliptic-hyper-
bolic type if regions of subsonic and supersonic

flow both appear in a single flow ficht. Inasmuch

as the mathematical theory of such equations is

still in a rather early state of development and
methods have not yet been discovered for the

exact solution of such equations, the engineer is

forced to turn either to experiment or to approxi-
mate methods for the solution of practical prob-
lems. Of the various methods that have been

proposed for the approximate solution of the equa-

tions of transonic flow theory, the most successful
and also the most versatile method is that de-

scribed recently for two-dimensional flows in refer-

ence 4. This was demonstrated in reference 4 by

the presentation of results for a large number of
specific applications for which experimental and
other theoretical results were available for com-

parison. Additional results for both two-dimen-

sional and axis3mm_etric flows with free-stream

Math nuinber 1 are given in reference 5. The

latter account is brief, however, and it is the pur-
pose of the present paper to provide a more de-

tailed account of the extension and application to

a:ds3qnmetric flows of the method described origi-
nally in reference 4. Inasmuch as this method of

approximation is of somewhat novel character and

the mathematical basis for the procedure is only

incompletely understood, the results are again

1
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evaluated by extensive comparisons with experi-
mental results and also with other theoretical re-

sults whenever available.

PRINCIPAL SYMBOLS

a parameter defined in equation (50)
C Euler's constant _ 0.577215665 .

D

C. pressure drag coefficient, (p_/2) _2S,,,

Cp pressure coefficient, P--P_
(p=/2) (_=_

D pressure drag

d maximum diameter of body of revolution
h interval between successive values of x in

numerical integration

k MJ (-y+l)
U_

1 length of hody
51 local Mach number

M. free-stream Mach number

p local static pressure
p= free-stream sta/i(, pressure

R radius of body

S area of body cross section, 7rR_

U_. free-stream velocity

u,v perturbation velocity components paralh'l
to x and r axes, respectively

u_ value of u obtained by solution of equation

(16)

u++ value of u obtained by solution of equation

(35)

u+_ value of u. obtained by solution of equation

(47)

x,r cylindrical coordinates where x extends in
the direction of the free-stream velocity

7 ratio of specific heats, 1.4 for air
n difference between "predictor" and "col

rector" for numerical integration (see

eqs. (23) and (24))

XE 1--+l[+2--k'u

ku a(_ _'-1+ ]CU

X,, k brtl

v_ free-stream densily of air
d

r thickness ratio, [

_o perturbation velocity potential

SUBSCRIPTS

cr values associated with (,ritical ._lach num-

ber

i values associated with incompressible flow
or with M_.=0

m values associated with maximum diameter

of body

x,r differentiation with respect to the variablo

in question

FUNDAMENTAL EQUATIONS AND BOUNDARY

CONDITIONS

STATEMENT OF PROBLEM

Consider the steady axis3anmetric flow of an

inviscid compressible gas past an arbitrary slender

pointed body of revolution, and introduce cylindri-

cal coordinates x and r with the x axis parallel to
the direction of the free stream, as illustrated in

/-,e(x)
/

/

o 1

FmUBE 1. View of body and coordinate system.

figure 1. Let the free-stream velocity and density

be U® and p_, the perturbation potential be ,,

and the perturbation velocity components parallel
to the x and r axes be _, or u, and _, or v, where

the subscript indicates differentiation. The bound-

ary conditions require that the perturbation veloci-
ties vanish at infinity, and that the flow be tangential

to the body surface. The first condition indicates

that _ is constant at infinity. The second condi-

tion can be approximate(t for smooth slender

bodies by

(r_r)r o U It dx (1)

where R and S represent, respectively, the ordi-

nates and cross-section area of the body. The

relation between the pressure coefficient C_ and

the perturbation velocity components is likewise

approximated and reduces to the following form

for points near the body surface:

Cp= P--P_ =--2 -_:

2

_r 2

(2)

The corresponding expression for points on the

body surface is

Cv=---2 _ (dR_ _u_-\_/ (3)
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These relations are familiar from linear theory but

apply equally for transonic theory. The differ-
ential equation for _ is not the same as in linear

theory, however, but: is

M_Z6,+l)

(4)

where 3Io_ is the Mach number of the undisturbed

flow and v is the ratio of specific heats (1.4 for air).

It is useful to note that the total coefficient of _x_,

that is, 1--]l_--kg,, corresponds in the present
approximation to 1--al 2 where _A[ is the local
Mach number.

In transonic and supersonic flows, it is also

necessary, in general, to provide appropriate

relations for the discontinuous changes in velocity

that occur at shock surfaces. The necessary

equations, when simplified to the form consistent

with the appro_mations of transonic flow theory,
reduce to

(1-M_ _)(u.-u,)% (v.--v_)_ ")

U _ (5)
_Oa= _v

Ua_Ub

where the subscripts a and b refer to the vahles

immediately upstream and downstream of the
shock surfaces.

Solutions for problems of transonic flow theory

must satisfy not only equations (1) through (5),

but certain additional requirements concerning

the regions of influence and dependence associated

with subsonic and supersonic flows. Although a
detailed discussion of these conditions is com-

plicated by the presence of both subsonic amt

supersonic flows in a single flow field, the principal
conclusion is that the usual conditions apply
locally and must be satisfied in order to obtain

solutions that are physically realistic (see ref. 6,

pp. 448-453, for an elementary discussion of this
matter).

SIMILARITY RULES

The equations for axisymmetric transonic flow

enumerated above contain a similarity rule that

associates the pressure fields of affinely related
families of bodies. Various members of such a

family of bodies may be of different length 1 and

thickness ratio r, but must have ordinates given

• by an expression of the form

where.f is the same function of x/l for all members

of a single family. If the subscripts 1 and 2 refer

to different members of a given family, the simi-

larity rule states that. the pressure coefficients Ca,

at corresponding points defined by

x2 xl r._ /-_i®,2(%+ 1) rlrl

?-_=_' _=_/.1I_2(,.[.2+ 1) r2l, (7)

are related according to

c,=9,),.., ' (8)

provided the free-stream Math numbers of the

two flows arc in accordance with the following

expression :

1--3I®z 2 {"72"_2 1--3I®, 2

The similarity rule given above cannot be used

directly to relate the surface pressures on bodies

having different t]fickness ratios because the

ordinates of related bodies given by equation (6)

do not conform with the relationship for cor-

responding points given by equation (7). Thus
the r coordinate of a point in the vicinity of body

2 that corresponds to a point on the surface of

body 1 is given by

r_ /_lf®,2(_',+ 1) (rt_2 (10)

Oswatitsch and Berndt have shown (ref. 7)

that a similarity rule can be established for the

surface pressures on affinely related bodies of

revolution if it is assumed that the longitudinal

perturbation velocity component u is given by

an expression of the form

U= d2S,
u 27r _ m r+g(x) (11)

in the vicinity of tile body. This relation permits

the calculation of the difference in pressure
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between the point r., and the surface of body 2.

Tile similarity rule for the surface pressures follows

immediately. It, states that

(12)

provided still that the free-stream Math numbers

are in accordance with equation (9). A similarity

rule for drag" D can bc obtained by combination

of equation (12) and the following expression for

the drag coefficient CD:

It is

G,= D C'. d. (la)
2

where the prime indicates differentiation wilh

respect to x and N,,, refers go the maximum cross-

section area. This relation simplifies if the body

is either pointed or cylindrical at the base, since
then S'(l) is zero.

It shouhl be observed that the relation given

by equation (11) follows as a direct consequence

of the assumption implicit in the use of the

slender-body boundary condition given by equa-

tion (1) that at any given x the product r¢_. is
constant between the x axis and points in the

vicinity of the body surface. The error intro-

duced into the analysis by the use of equation

(11) is thus of the same order of ,nagnitude as

that already present in the fundamental relations

of the small disturbance theory of transonic flow

enumerated in equations (1) througt_ (5). It is

important to recognize, however, that equations

(11), (12), and (1.4) nmst be regarded as approxi-

mate relations within the framework of analysis
specified by equations (1) through (5), and that

exact solutions of the latter equations wilI not

obey the similarity rules perfectly. This situa-

tion may be contrasted with that for the simi!arit_7
rule for airfoils or for wings of finite span for

which the similarity rules are exact, relations

within the framework of the small disturbance

theory for transonic flow.

A much stronger limitation that affects the

general applicability of the similarity rules for
axisymmetrie flows, and to which attention does

not appear to have been directed previously, is

concerned with the region_; of influence and

dependence. This limitation arises because the

extent and even the existence of a region of

supersonic flow imbedded in a subsonic flow, or

of a subsonic region imbedded in a supersonic
flow, are not determined by the value of the strut-

larry parameter (I_I_2--1)/[3[_2(_/+1)r 21 alone,

as in flows around thin wings, but by the values
for t_he Math number and thickness ratio indi-

vidually. These effects arc small at Math

numbers near unity for which the sonic line is

inclined at a steep angle to the body surface,
but become large as the inclination of the sonic

litw approaches tha.t of the body surface at _[ach

numtu,rs ,lear the lower and zipper critical. The

latter Math numbers arc (h,/incd, respectively,
as the lowest subsonic Math number and the

highest supersonic Mach number at which sonic

velocity (i.e., u/g_=(l--.lI+2)/[M+Z(-r+ l)]) oe-

curs at, the surface of the body. Consider, as
an example of a east for which these effects are

large, that. results are ava.ilable for a certain body
at the lower critical Mach mlmber and thgLt it

is desired to use the similarity rule to determine

the flow around an afl]nely related body that is

more slender than the first body. The flow past
the second body will be found to eontain a super-

sonic region, but since there are no shock waves

in the flow around tim first body there will be no
shock waves indicated in the flow around the sec-

ond body. If, on the other hand, results are

available for a body at a Math number somewhat

greater than the lower critical, and the flow con-

tains a shock wave, application of the similarity
rule to compute the flow armmd an affinely

related body of sufiqciently greater thickness theft
the flow is purely subsonic leads to the completely

unacceptable result that there are diseontinuities

in a purely subsonic flow. It is evident that

equally unacceptable results arc indicated by the

similarity rule for drag, a.nd that related diffi-
culties with both the details of the flow fieht

and the drag are encountered at. Math numbers

in the vicinity of the tipper critical.

The properties of tile similarity rule discussed
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in the precedingparagraphrequire the imposi-
tion, for free-streamNiaehnumbersotherthan1,
of certainratherdefiniterestrictionson thevalues
for r, or for M_, for which the surface pressures

and drag are related by equations (12) and (14).

It is clear such a restriction is necessary because
the similarity rules contain no mechanism for the
subtraction or addition of shock waves and the

associated contributions to drag, as there should

be in any proper relationship between subcritical

and supercritieal flows. These and related points
will be examined further in the course of the

following discussion.

The remainder of this paper is concerned with

the presentation of _ method for the approximate

solution of the problem described by equations (l)

through (5), application to a number of specific
bodies, and comparison with existing theoretical

and experimental results. Purely subsonic flows

are discussed first, purely supersonic flows next,
and flows with free-stream Mach number near

unity are treated last.

SUBSONIC FLOWS

APPROXIMATE SOLUTION" OF EQUATIONS

It is convenient in the analysis of subsonic

flows to introduce the s3nnbol k_ as an abbrevi-

ation for the coefficient of _

XE----1 --.1,/_ 2--.1I_ 2_ _= 1--3l,.=--ku> 0 (15)

and rewrite equation (4) in the form

It is now assumed that XE is neither zero nor

infinite and that it varies sufficiently slowly that
its derivatives can be disregarded so that it can be

considered, temporarily, as a constant. At this

stage, the problem is equivalent to that encoun-

tered in linearized theory of subsonic flow around
slender bodies of revolution (it is identical if X_ is

replaced by 1--3I_2). Tim solution for _ is thus

well known (see, e.g., ref. 8, p. 188) and is given by

(17)

where the subscril)t E denotes that the solution

refers to equation (16) of elliptic type with XE

constant. The corresponding expression for u_

follows immediately by differentiation. It can be
approximated for points on the surface of a smooth

slender body by

u_ S" (x) In X_S 1 fo z S" (x) -- S" (_)d_U® 47r 4_rx(1--x) t-_r__ _ '

u, (18)---- In XE4 U¢.

where the subscript / refers to the values for in-

compressible flow, or for 3[., =0. Differentiation

yields

"" d(u,/U._)
d(uE/U._)_S(x) In XEq (19)

dx 4_r dx

If, now, 1--_l[,2--ku is restored in place of X_ so

that, in effect, the local value for X_ is used at each

point, and the subscript E on u is dropped, equa-

tion (19) becomes

d(u/U_) S'"(x) In (1--M_2--ku)-] d(ujU.) (20)
dx 4r dx

Equation (20) is a nonlinear ordinary differential

equation for u on the body surface. This equation

is of first order and the necessary value for the

constant of integration is determined by assuming

that u equals u_ at the point on the forebody

where S"(x) vanishes, since ue is indicated by

equation (18) to be independent of X_ and hence

of Maeh number at this point. Thus

u=u_ where S"(x)=0 (21)

The e,alculation of u on the surface of a body of
revolution of specified shape is thus reduced to

the solution of an equation of the form

du (22)jT=F(x,u)

which can be solved, at least approximately, by
application of any of a number of standard

techniques. The corresponding values for the

surface pressures follow dh'ectly upon insertion of

the results into equation (3).

The particular method used to calculate the

results presented in the following section of this

report is that of Milne (ref. 9, p. 135). It is a

step-by-step process in which the values of the

dependent variable u are calculated one after the
other for a sequence of equally spaced values of
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the independent variable x. The successive
values of x are denoted by x0, xl, x2, . •., the

interval is denoted by h, and the corresponding
values of u are denoted by u0, u_, u2, .... Dif-

ferentiation with respect, to x is indicated by a

prime. The actual calculations proceed by alter-
nate use of the formula

4 , , ,
_.+1---u._3-1-.,h(2u. --u.__ +2u._2 ) (23)

as a "predictor" and Simpson's rule

1
•tt,,+l u._l-+-_ h(_t,_+l'+4u,,'+u,--') (24)

as a correcter." Both expressions are approxi-

mate, but the error in the result given by the
correcter is roughly equal to _/29 when A is the

difference between the results given by the two
formulas. It is assumed ttmt the value given by

equation (24) is correct so long as A/29 is not

significant. Abrupt fluctuations in the values

of _ indicate the presence of errors and the calcula-
tions should be checked. If the error h/29

proves to be larger than the desired accuracy

permits, it is necessary to shorten the interval h.

Cutting the interval in half will divide the error

by about 32.

The computation is started at the point where

S"(x) is zero and requires four consecutive known
values for u. One of these is given by equation

(21), the remaining throe are determined by use
of the first six terms of a Taylor's series for u about

the point where S"(x) vanishes. This requires
evaluation of the first five derivatives of u with

respect to x at the point where S"(x) vanishes.
The first of these is calculated directly by use of

equations (20) and (21). The remaining four
are calculated similarly by use of corresponding

expressions derived from equation (20) by succes-
sive differentiation with respect to z.

APPLICATION TO PARABOLIC-ARC BODY

As an application of the foregoing results,

consider subsonic flow past a parabolic-arc body

of revolution of length 1 and maximum diameter
d. The ordinates R of this body are given by

x x 2

where r represents the thiel_ess ration d/l. The
variation of cross-section area S with _ is thus

S_-_rR2=47rz21_Lt kZ/j (26)-,

and the points at which S"(_') vanishes are located
at

xs,,=o=_ ld: (27)

The expression for u at zero Mach number can

be determined directly upon substitution of the
above relation for S(x) into equation (18) and

carrying out the indicated operations. The result

can be expressed simply as

u_. S"(x)[3+ln_ ] (28)U¢. 47r

where R(x) and S(x) now refer to the radius and
cross-section area of a parabolic-arc body of

revolution, and are defined as functions of x by

equations (25) and (26). Substitution of equation

(28) into equation (20) leads to the following

ordinary no_flincar differential equation of first
order for u on the surface of a parabolic-arc body
of revolution in subsonic flow.

d (u/U®) S'"
(Ix _ 4_ In (1--M®2--ku)

d " rR

The constant of integration is evaluated by im-

posing the condition derived from equations (21),

(27), and (28) that

u:O at x=l(i--'_'_ (30)
"_ \ ;s J

The problem described by equations (26), (29),
and (30) has been solved numerically for several
suberitical Mach numbers for a body of fineness

ratio l/d of 10. The resulting values of u/U.. are
tabulated in table I together with thc values for

the error term A/29. Results are given for only

the front half of the body since the solution is

symmetric around the center of the body, and the
calculated values at x and 1--x should be identical.

It can be seen from inspection of the values for

A/29 that the size of the interval h, which was
maintained at 2 percent of the body length

throughout all of the calculations, is sufficiently
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small that inaccuracies incurred ill tile numerical

solution are negligible.

The corresponding values for C_ on the body

surface can be calculated directly from the values

for u/U, by means of equation (3). The resulting

values are tabulated in table I, and are shown

graphically in figure 2. The corresponding re-

refits indicated by linearized compressible flow

theory arc shown in figure 3.

The latter results are calculated by means of

the following expression derived from equations

(3), (18), and (25) with XE replaced by 1--Aft. 2.

_ S" (31)
C,-----_-(3 +ln "_Fl_rR_--R'221

It can be seen that the values for Cp obtained

by application of the present theory are qualita-

tively similar to those indicated by linear theory,

although somewhat more negative at all points.

This trend is similar to that shown in reference 4

to result upon application of the same procedures

to two-dimensional subsonic flows.

The results presented in table I and figures 2

and 3 are repeated in figure 4 together with the

corresponding results indicated by the second-

order approximation to the solution of the equa-

tions of transonic flow theory for flow past a

slender parabolic-arc body of revolution. The

.... .900 !
__ d----

..... .850 i
----- 800
.... ,700
..... O

.2 .3 .4 .5
x� 1

FIC.TTRE 2.--Pressure distributions on a parabolic-arc body
of revolution of fineness ratio 10 at subcritical Mach

numbers as indicated by present theory.

•501377--59-----2

-•12

.12

1/o'=10

/

e __ __/1/,;
! -

;'l.ql Isl order, (eq. (31))

Mo
-- •955
...... .950
----- .920
----- .900

__ _ __ - .... .850
----- .800
.... .700

0
I

J .2

-1
i

-- ------t

l __ J q

.3 .4 .5
x/I

FIGURE &--Pressure distributions on a parabolic-arc body

of revolution of fineness ratio 10 at subcritical Mach

numbers as indicated by linear theory.
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(a) M¢0=0.70 (b) M_=0.80 (c) M'_=0.85 (d) M_=0.90

(e) M,0_0.92 (f) 3I_=0.93 (g) 3/¢_==0.934 (h) 3I+:=0.935

Fxc.vRE 4.--Pressurc distributions on a parabolic-arc body of rcvohdion of fineness ratio 10 at subcrifical Math numbers
±

as indicated by present theory, by other theoretical results, and by experiment.

latter results are calculated by use of tim expres-
sion

C_,_=C+,, *1I_2('?+1) r4 3-- ?,X2 47 'R ' _

(32)

which is obtained from a corresponding result

_ven by Van Dyke in reference 10. The ex-

pression given in reference 10 differs from equation

(32) in that the quantity 2tI:'_(_,-+-1) is replaced

by _,+1. This change, which is associated with
a corresponding difference in the coefficient L"

of the no_flinear term of equation (4), has very

little effect on the values for C, calculated by

means of equation (32) since the quantity involved

is absent in the first-order term and first appears
in the much smaller contribution of the second-

order term. The consequences of such a change

in the quantity represented by/c become of con-
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siderably _eater significance ill tlw calculation of
transonic flows and in the determination of the

critical Mach number, however, because the mag-

nitude of _l/U_ associated with the occurrence of

sonic velocity is inversely proportional to k. As

an example, the critical value for the pressure

coefficient C_, associated with the free-stream

Maeh number of 0.85 and zero ¢, is --0.320 if

3/,_2(_,-i- 1) is used for kU_, and --0.231 if "),+1 is
used. Since the exact value indicated by isen-

tropic flow theory is --0.302, it follows that the

formulation of transonic flow theory in wllich

kU_ is equal to 3f_2(-r+1) is about four times as

accurate in this respect as the fern-relation in

which/cU_ is equal to _+1.

Experimental data h'om reference 11 by Taylor

and McDevitt are also included in this figure for
all subcritical Mach numbers for which resuhs

were measured. The tests were conducted in the

Ames 14-foot transonic wind tunnel with a model

that consists of approximately the forward 85 per-

cent of a parabolic-arc body of revolution of fine-

ness ratio 10 and length 6.67 feet:. The model

was supported from the rear by a circular cylinder

having a diameter somewhat smaller than that of
the base of the body. No e0rrections have heen

applied to the data to take account of either wind-

tmmel wall interference or lhe abbreviated length

of the body.

It can be seen from the foregoing comparisons

that the principal differences between the pressure

distribution indicated by linear theory and by

higher approximations occur near the middle of
the body at Math numbers near tlm critical. In-

sight into the magnitude of these effects can be

had by examination of fignlre 5 which shows the

variation of C_, with .]f_ at the midpoint of a

0....., .... [ t --1

..... 2nd " ,(eq (32)) [ _X/' [ |

......,,t
Mm

FI(;t-I_F, 5.--Variation of pressure eoemcieltt with M-aeh

number at. the midpoint of a parabolic-are body as in-

dicated by present, theory, by experiment, and by two

different methods of successive approximation to the

transonic equation.

parabolic-are body of revolution of fineness ratio

10. Also included in this fignlre is a line indicating

the variation of the critical pressure coefficient
associated with the occurrence of sonic velocity at

a point, such as the midpoint of a parabolic-arc

body, at which dR/dx is zero. The present results

are included in this fig_lre together with experi-

mental results from reference 11, theoretical re-

suits indicated by equations (31) and (32), and

by the first, two steps of an alternative method of

successive approximation described in the appen-
dix of reference 12 that involves the solution of

quadratic rather than linear eqmltions at each step

of tile iteration process. The latter values for C v

on the surface of a body of revolution are calcu-

htted by application of tlle following expression

in which the subscript N refers to the results indi-

cated by the quadratic method and n refers to the
_th approximation using the classical metlmd of

successive approximation:

r +(dR_ 2 --2(1--3IJ)/_ /l" 5I_2(_+1) FC +(dR_'_'_"]'_:nt,ll_2(_+l) ..... )"," \dx.]--_)_'--_/_1 1-_2(1-.1I=2) L ""-, \(h'/JJ 1_21/_ 2 (C., --C,,_,)
(33)

in which

""-,_° \ dx /

Vahles for Cp.=l and Cp.=2 can be calculated for

parabolic-arc bodies by application of equations

(31) and (32). It is evident from the form of

equation (33) that the values for CpN approach

those for C_. in the limit of an infinite number of

iteration steps, provided, of course, that tile series

expression for Cp. converges. If only a finite num-

ber of terms are considered, as must be done in

any practical application of the method of sueces-

sive approximation, the approximate values for

the pressure indicated by C_, and Cp v are different.

The utility of considering the two sets of results

simultaneously resides in the fact that the values

indicated by Cp. tend to underestimate the true
variation of the peak negative pressure with Math
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number,whereasthoseindicatedby Cp,v tend to

overcslimate the true variation. The true varia-
tion is thus bounded within well defined limits.

It can be seen from examination of figure 5 that

the results of the present numerical calculations

fall within or very close to these limits. Similar

applications of the quadratic method of successive

approximations to two-dimensional flows can be
found in references 4 and 13.

The problem described by equations (26), (29),

and (30) has also been solved numerically for sev-

eral subcritical Math numbers for a parabolic-arc

body of revolution of fineness ratio 6. The result-

ing values for u/U_, 5/29, and Cp are tabulated in

Table II. The pressure distributions are also illus-
trated graphically in figure 6. The corresponding

results indicated by linearized compressible flow

theory are shown in figure 7. These results are

repeated in figure 8 together with the correspond-
ing theoretical results indicated by the second-

order approximation given by equation (32), and

the experimental results of Drougge from refer-
ence 14. The latter results were obtained from

tests with a model that consists of the forward 5/6

of a parabolic-arc body of revolution of fineness

ratio 6. It was supported in tile wind tunnel by

a circular cylinder of tile same diameter as the

base of the body. Although no corrections have
been applied for the effects of the abbreviated

length of the body, it is clear that the values for

C_ on a complete body should be somewhat more

negative than those on the parthd body tested by
Drougge. Theoretical considerations indicate that

the magnitudc of this effect is about 0.007 at the

l/d:8 I

i

.5 _----
Present results

M®
.88

---- .87

..... .85

I

I

j
|

----- .80 ....
.... .70 I

i

HI

4 - -- --

x/l

F_c_R_ 6.- Pressure distributions on ,_ parabolic-arc
body of revolution of fineness ratio 6 at subcritical _[ach
numbers as indicated by present theory.

..... 0 ----4

,4 .5

Cp

-.5 ---- -- _

l/d:6

I

0 °L

I
. ;'//] •

.2 "_-_'"::__ -- I

Ist order,(eq (31))

.5 !/'/_ ___ Moo --I

/li -- .88
,. ---- .87"

..... .85
.4 = _ __ ----- .80 _

.... .70

p--.

"_0 .I .2 .3 .4 .5
Xl!

FW,URE 7.--Pressure distribuiions on a parabolic-arc
body of revolution of fineness ratio 6 at subcritical Mach
nllmbers as indicated by linear theory.
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F*GtTRE 8.--Pressure distributions on a parabolic-arc body of revolution of fineness ratio 6 at subcritical Mach numbers

as indicated by present theory, by other theoretical results, and by experimeat.
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middle of the body, and about 0.001 at the nose

of the body. A more detailed investigation of this
matter can be found in reference 10 by Van Dyke.

Two conclusions emerge from a comparison

of the theoreticM and experimental results illus-

trated in figure 8. They are that slender-body

theory is capable of .yielding reliable results for

subsonic flow past a parabolic-are body of revo-

lution of fineness ratio 6, and that the simple

result provided by linearized compressible flow

theory remains a useful approximation for all
Maeh numbers up to the immediate viehdty
of the critical

Theoretical pressure distributions for a para-
bolic-are body of revolution of fineness ratio 6
could, also have been calculated, and with less

effort, by application of the similarity rule given

by equations (9) and (12) to the results a.lready

eMculated for the parabolic-are body of fineness
ratio 10. As noted in the course of the preceding

discussion of the similarity rule, the results

obtained by application of equations (9) and (12)

do not agree perfectly with those obtained by
direct ealculations. It is the purpose of the

present discussion to illustrate the magnitude

of these differences by an examination of the

specific case mentioned above. Figure 9 shows

...... _m;I0ri?_ coiculafions f_om t/O'=lO \ |

........... ....... o _\]

"1 o ] OCP

,_15 . --

FI/II-R],: 9.--Vari,ltion of pressure coefficient with Mach

pumber tit various stations on a parabolic-are body of

fineness r,ltio 6 as obtained by direct caleulalions nsing

lhe present theory, by use of the similarity rule, and by

experiment.

the variation of Cp with h'ee-stream Math mlmber

at several stations along the length of the body

as indicated by the direct, calculations for the

body of fineness ratio 6, by application of the

similarity rules together wit,h the results calcu-

lated for the body of fineness ratio 10, and by the

experimental reslflts of Drougge (ref. 14) for a

body of fineness ratio 6. The stations for which
results are included on this gn'aph art selected
so as to coincide wit tt the location of the orifices

in the modal tested by Drougge. It can be seen

that the resuIts obtained by application of the

similarity rule are very dose to those obtained

by direct calculation over substantial portions of

the body, but. that important differences occur in

the vicinity of the middle of the body as the

free-stream Math number approaches the critical
and the local velocities approach the speed of

sound. Perhaps the most striking difference
concerns the h'ce-stream Math numbers at which

the two sets of theoretical results terminate.

In the direct calculation, the resuhs terminate
with the attainment of the critical Maett number,

whereas the results obtained by application of
the similarity rule terminate at Math numbers

well below t.he critical. If it is presumed that

results appropriate for supereritieal Mach num-

bers would contain shock waves, and that the

bodies would experience a pressure drag, it is

clear that the results obtained by application of

the similarity miles would be in serious error

since, in the present example, such effects would

begin to appear at a Math m_mber of about
0.845 rather than about 0.88. It is evident,

furthermore, that the magnitude of these effects
wouhl be less if the fineness ratios of the two

bodies were more nearly the same, but greater

if the fineness ratios were more different, and of

opposite sign if the similarity rule were applied
to calculate the pressure distribution on a thin

body using known results for a thicker body.

SUPERSONIC FLOWS

APPROXIMATE SOLUTION OF EQUATIONS

The procedure described in the preceding sec-

tion will now be applied to the analysis of super-

sonic flows. Thus, introduce the symbol X_r as
an abbreviation for the coeffieient of _,_

(a4)

ilI
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and rewrite equation (4) as follows:

1
X/_xx-- r _r--_,= 0 (35)

If it is again assumed that XH is neither zero nor

infinite and that it varies sufficiently slowly that

its derivatives can be disregarded, the problem
is equivalent to that encountered in linearized

supersonic slender-body theory. The solution

for _ for points on the surface of a smooth slender

pointed body of revolution is given by (see,

e.g., ref. 8, p. 190)

U_ f_- 4_-_,r S' (})d_ (36)
_"= -?-_ J0 <(x-_)=-x=_

where the subscript H denotes that the solution

refers to equation (35) of hyperbolic type with

X, constant. The corresponding expression for

u_ can be approximated for points on the smeace

of a smooth slender body by

u_, s" (x) ),.S'+! _x S" (x)-S" (_)
_--_=---4--_- In 4rx_ 27rJo x-_ (t_

S" (x) lU _.H@fH(x) (37)
4r

wherein(x) can be interpreted as the expression

for u/U_ indicated by linear theory for a free-
stream Math number of V_. Differentiation

yields

(l(u./SL)_S'" (,) dr.(x)
dx ;t_ lnX,-t dx (38)

If, in the same manner as described for the sub-

sonic case, ._[_2--1_-];'u is restored in place of
X_ so that, in effect, the local value for ),_ is

used at. each point and the subscript H on u is

dropped, equation (38) becomes

([ (7//[_¢0)
=_"q (x)- In (M_ _- 1+ku) d dry(x) (39)

dx 47r dx

As in the previous discussion of subsonic flows,

the resulting relation for u on the body surface is

a nonlinear ordinary differential equation of the

first order, and it is necessary to supply a wdue

for u at some point along the body in order to

evahmte the constant, of integration. Perhaps
the most logical method for the evaluation of this

13

constant for flows that are supersonic everywhere

is to use the value for u at x=0 that is provided
by the solution of the equations of transonic flow

theory for flow around a cone tangent to the nose

of the body. Practical difficulties arise in the

application of tiffs procedure, however, because
first, the solution for the cone canno_ be _a'itten

in a simple form, and second, the numerical tables

and charts in which the results of numerous specific

cases are summarized are generally inadequate for
the present purposes because of the lack of suffi-
cient calculated results for slender bodies for low

supersonic Mach numbers. These comments

apply not only to the fairly recent results of

Oswatitsch and Sjodin (ref. 15) and Shen (ref. 16)

based on the simplified equations of transonic flow
theory, but also to the older and more extensive

results based on the complete equations of com-

pressible flow theory and presented in references
17 and 18. An alternative method that avoids

this difficulty and parallels the procedures em-

ployed for the approximate solutions of other

problems in this paper and in reference 4 is to

evaluate the constant by assuming that u equals

un at the point on the forebody where S"(x)
vanishes, since uH is independent of Xa and hence

of Mach number at this point; thus

U

&-_=f_ where S"(x)=0 (40)

The calculation of u on the surface of a body of

revolution of specified shape in supersonic flow

is thus reduced to the solution of an ordinary
differential equation of the form

_x=F(x,u) (41)

subject to the additional condition given by equa-

tion (40). This problem is identical in form to

that encountered at. the corresponding point in
the discussion of subsonic flows, and can be solved

numerically in a similar manner. Once the values

for u on the surface of the body are determined,

the corresponding values of C_ follow directly

upon insertion of the results into equation (3).

APPLICATION TO PARABOLIC-ARC BODY

As an application of the foregoing theory, con-

sider supersonic flow past a parabolic-arc body of
revolution of length 1 and maximum diameter d.
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The expressions for the ordinates R, the cross-

section area S, and the location of the points at
which S"(x) vanishes are given by equations (25),

(26), and (27). Substitution of these relations

into equations (37) and (39) leads directly to the

following differential equation for u on tile surface

of a parabolic-are body of revolution in super-
sonic flow:

TECHNICAL REPORT R-2--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

latter results are calculated by use of the following

expression derived from equations (3), (26), and
(37) with XH replaced by .1f_ _- 1.

71"

+24r2/(2--3-_)--R '2 (44)

d(u/U_) S"'(x) In (M= =-1 +ku)
dx 47r

The constant of integration is evaluated by im-

posing the condition derived from equations (26),

(27), and (40) that

u

_=--2_._r' at. x=_( _o ] (43)

The problem described by equations (26), (42),

and (43) has been solved numerically, by applica-

tion of Milne's method described in the preceding

section on subsonic flows, for several supersonic

Math numbers for a body of fineness ratio I/d of

10. The resulting values for u, M29, and C_ are

tabulated in table III. The results for Cp are

also shown graphically in figure 10. The corre-

sponding results indicated by linearized compress-

sible flow theory are shown in figure 11. The

The results presented in table IlI and figures

l0 and 11 are repeated in figure 12 together with

the corresponding results indicated by the follow-

ing expression given by Van Dyke in reference 10
for the second-order approximation to the solu-

tion of the equations of transonic flow theory for

slender parabolic-arc bodies of revolution:

. ]1t®=(Y+ 1) r, [3__ ____7(_R_)2_k_ 47 (R"]47c,_=c,,+ _l

(45)

As noted previously in the discussion of subsonic

flows, the quantity T+ 1 that appears in the result

given by Van Dyke has been replaced by
M®_(-/q-1) to conform with the present fornmla-

tion of the equations of transonic flow theory.

It can be seen upon exanfination of figures 10,

11, and 12 that lhe results obtained by applica-
tion of the present theory are again qualitatively

similar to those indicated by first- and second-

order theories and that the main differences occur

ISt order,(eq (44))

! " M®

" - .... 40 t I _-.... /_ L 2 .L 1 .1 I ±.. _
.24(_ .I .2 .5 .4 .5 .6 _7 8 .9 LO "240 J 2 .3 .4 5 .6 .7 .8 .9

x/l xtl

FI(a:RE lO.--Pressurc distributions on a parabolic-are

body of revolution of fineness ratio 10 at Maeh numbers

above the upper critical as indicated by present theory.

1
(.0

}_IGI."RE l l.--Pressure distributions on _ parabolic-are

body of revolution of fineness ratio 10 at _Iaeh numbers

above the upper critical as indicated by linear theory.
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in the regions where the h)cal Math mmd)er ap-

proaches unity. T]te most prominent difference
occurs near the tail of the bodies where the first-

anti seem,d-order theories indicate that the flow is

subsonic.

This result is contradictory to the basic assump-

tion that the flow is supersonic, but it is never-
theless qualitatiw,ly corree}:, since more exact

investigations also indicate that the flow is sub-
sonic at the tail of a body of revolution that termi-
nates like a cone. There is no assurance that the

smooth deceleration through sonic w'locity indi-

cated by the ill'St- and second-order theories is

correct, however, and further investigation appears

necessary for the clarification of this detail. On

the other hand, the results indicated by the present

theory terminate when u reaches the value

(3[= 2- l)/k associated with the occurrence of sonic

vdoeity. When this situation occurs, the inequal-

ity specified by equation (34) is no longer satisfied,
lhe argument of the logarithmic term of equation

(39) vanishes, and du/dx increases logarilhmically

lo infinity, lr the solution for the remainder of

lhc body is required, it is necessary to consider the
nature of the shock wave that must be present in

the vicinity of tim rear of the body and to use

equations thai are not restricted in application to

supersonic flows. As a result, fm'ther discussion of
this nmtter is deferred to the subsequent section
on flows with h'co-stream Math munber near 1.

In any case, the entire question is of rather an
academic nature for parabolic-arc bodies in the

Mach number range considered in the preceding

discussion because (a) the region involved is only

a small fraction of the body length, (b) significant

viscous effects are generally present in this region,

and (c) the information is frequently not needed

because the bodies used in practice or investigated
in the wind tunnel are cut off forward of this

region.

No experimental pressure distributions for a

parabolic-arc body of revolution of fineness ratio
10 are available for comparison with the theoreti-

cal results shown in figure 12. The maximum

test Mach number of the investigation reported

in reference 11 is 1.20, whereas the lowest _rIach

number for which the present theoretical results

indicate supersonic flow at the nose is 1.21, The

comparison with first- and second-order theory

should suffice, however, for an estimate of the ac-

curacy of the present results for supersonic flows.

FLOWS WITH FREE-STREAM MACH NUMBER

NEAR 1

^ePROX1MAT_ SOLUTmN OFE_UATmNS

The analyses of subsonic and supersonic flows

given in the preceding sections have started by

introduction of a symbol X for the coefficient of

_,_ and the assumptions that X is neither zero nor
infinite and that it _-aries sufficiently slowly that

it can be regarded as a constant in the early stages
of the analysis. Since the results so obtained

terminate if X=0, or physically if a point is ap-

proached at which the velocity is sonic, it is evi-
dent that additional considerations are necessary

Io permit the study of flows with free-stream Mach
number near 1 in which the acceleration from sub-

sonic to supersonic velocities is an essential feature.

The technique adopted is to introduce the sym-
bol X,, as an abbreviation for the coefficient of

,p_ rather than _z:_, thus

3'_- 1 i)U..
xv:=:,l/_ __- _o=---/c_.r/u (46)

whence equation (4) may bc written as follows:

) _oA-,_Orr--Xp_::=(._[,.,2--1)pz::_fv (47)
/,

It is assumed, once again, that Xv is nonsingular
and that it, varies sufficiently slowly that it can

be considered as a constant in the initial stages of

the analysis. The resulting differential equation

is linear and is of elliptic or hyperbolic type de-

pending on whether the free-stream Math num-

ber, rather tha, n the local Math numbc,', is less

than or greater than unity. At free-stream Math
number 1, the term fv vanishes and equation (47)

reduces to a partial differential equalion of para-

bolic type that is familiar from the study of heat
conduction. This appears to be reasonable

inasmuch as properties of equations of l)arabolic

type are intermediate, in a certain sense, between
those of equations of elliptic and hyperbolic tyl)c.
At free-stream Math numbers slightly different.

from 1, the term fp remains, but is small. The

present analysis of such flows is therefore also
based on considerations lhal are normally applied

1o equations of parabolic type.

The starting point is the following relation for

_oe deriged from equation (47) with Xp positire

and eonstant, the boundary conditions stated in
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equation (1), and the form of Green's theorem

associated with the left side of equation (47) :

--Xpr 2
U_

where

l ff2r ff_ fx

Jo
Xe[r2+o2-2rp et_s (o-0)]

_'P 4 (,r-/9

_P-4_'(x-O e

(48)

Thc corresponding expression for Up follows by

differentiation. It can be approximated for points

on Ihe sm'facc of a smooth slender body by

up S"(x) In XvSeC l _S"(_)--S"(x),t(
(,_. 4r 4mi'---4rJo x--_

1 b {'2_ F _ f_

Jo dOJo p<lpJ, fv_i,d_ (49)Xp 6,t

where

C=Euler's constant = 0.577215665 . . .

If the fl'ee-stream Math number is unity, fp

vanishes and up can be calculated directly. The

resulting expression is precisely that proposed by
Oswatitseh and Keune in references 19 and 20 for

the calculation of u on the surface of tile forepart

of an arbitrary slender, pointed body of revolution

at. free-stream Maeh number 1. They have shown

that the results are in remarkably good agreement

with those measured oil tile front half of a para-

bolic-arc body having a thickness ratio r of }_.
In this comparison, the parameter Xe was arbitrar-

ily equated to

__ ±-2 (50)
Xp=; (_,-}-1) I/2; a2-

in tile notation of the present paper. In the in-

vestigations menlioned above as well as further
studies reported in references 21 fllrough 26, the

parameter Xe is regarded throughout as a eon-

stant, and various means are proposed for the

selection of an appropriate value. It appears, in

general, that the results obtained in this way are

remarkably accurate if the resulting values for

5u/bx are indeed reasonably constant. If, on the

other hand, bu/Sz varies sufficiently along the

body, no choice of a single value for Xv will lead
to a useful result. Thi_ point, which has ah'eady
been discussed in some detail for two-dimensional

flows in reference 5, is developed further in tile

course of the following discussions. Some criti-

cisms of the above procedure, Mthough principally

from a different poin! of view, have appeared in a

note by Miles (ref. 27).
If the free-stream Math mmfl)er is not unity,

equation (49) is an integral equation, and it might

appear that little progress ioward a solution has
been made. If attention is confined to Math

numl)ers near unity, however, it is only necessary

to approximate ca well h)cally and it is sufficient

to substitute Xp/k for _a or Ou/b_ in tile tril)le

inte_'al. The integral can then be evaluated and

the folh)wing relationship results:

+s,;(x>hl X"S" 
(; ,l/+_(m+l) 47r 4rrx

+l _o_S"(x)--S"(O ,18 (51)4rr. x--_

If, once again, k(bu/bx) is restored in place of

Xv, the subscript P is dropped, and use is made of

tile following relation between _u/bx and du/dx

along the surface of the body

_\t'=, _=LO+\_;JR LN:\F2/J_d7

b u " (52)

a nonlinear ordinary differential equation is

obtained for u on the body surface. It is

.-.,,+
S'S;'-] [-M=_(_,+ A)S,_'I,.

J L-- qr+ " -JJ
l F_S"(x)-S"(O

+_j0 ?__-- d_ (53a)
or

,t F" + s's"

+exp { 4,_) [- ,, + M=,-1

S" (x') In 3[+2(_+1)SeC
47r 4rx

l fo_ S" (x)--S" (_) d_] } (53b)-4_: x-_/
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This equation is of the first order and the same

general form

_=F(x,u) (54)

as encountered in the analysis of subsonic and

supersonic flows in the preceding sections, and it

is again necessary to specify some condition for
the evaluation of tlle constant of integration.

Two classes of cases are to be distinguished. One

class includes the foreparts of bodies with a convex

corner, such as a cone-cylinder, for which the

necessary condition is SUl)plied by the fact that

the velocity must be sonic, that is,

u 1--3I_ 2
(55)

at the shoulder. The other includes smooth

bodies along which the velocity accelerates

smoothly through sonic velocity and for which

there is no point for which a value for u can be

specified by a priori considerations. The pro-
cedures followed in the preceding sections and in

reference 5 suggest that u be equated to up at the

point on the forepart of the body where S"(x) is

zero, since, for Maeh numbers near unity, up is

independent of Xe at this point. This point has

the additional property, evident from equations

(53) and (55), of corresponding to the station
toward which the sonic point approaches as the

thickness ratio of the body becomes van|shingly
small.

This procedure does not suffice to determine a

solution in the present case, however, because

equation (53) is singular at this point and an

infinily of integral curves pass through the value

u uv at the point where S"(x) vanishes. Of all
these curves, however, only one is analytic (all

derivatives finite) at tlfis point, and selection of it

suffices to determine a unique solution. That

this is so can be seen by consideration of the series

of expressions ot)tained by successive differentia-

tion of equation (53a) with respect to x. After

an arbitrary number n of differentiations, an

expression is obtained for d_u/dx _ that involves
derivatives of u with respect to x up to the order

n-_ 1. The n+l derivative is, of course, unknown,

but it. is multiplied t)y S"(x) and the product

vanishes at. the point where S"(x) is zero, pro-

vided always that d"+tu/dx "+l is finite. It, thus

follows that all of the coefficients of a Taylor

series expansion for u at the point where S"(x) is

zero can be determined, the only requirement

being that, at each step, the derivative of next

higher or<ler is finite. The Taylor series suffices

for the determination of the solution of equation

(53) in the neighl)orhood of the point where S"(x)
vanishes. The remainder of the solution can be

determined by application of standard methods

such as that of Milne described in the preceding
seclion on subsonic flows.

APPLICATIONTO CONE-CYLINDER

A simple application of the foregoing theory is

provided by consideration of flow with free-stream

Math number near 1 past a slender circular cone-

cylinder of maxinmm diameter d and cone length

r , R(x) ]-g

o ¢/2

FIGURE 13.--View of cone and principal dimensions.

1/2 as illustrated in figure 13. The ordinates R

of this body are given by

R----_l_=_ for 0<_<lt2 l (56)

d I for x>l/2JR=_=r

The variation of cross-section area, S with x along
the conical part of the body is thus

S--_ R2=rrr2x 2 (57)

Details of the solution. Substitution of the

expression for S(x) given in equation (57) into

equation (53b) leads to the following differential

equation for u along the surface of the cone:

dEu. :_1_2-1 n r',, {2E.

AI:'-- 1 re lnx--2_-ln3[_2('Y+I)r'e_} (58)-t _11=2(_,___1) 4x

Introduction of the new varia,ble G(x) (lefhmd by

u 3Y= 2-1 r_ In x (59)
a(._)=_-F M ,(.y+ 1)
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leads to an equivalent differential equation

da [ 4x 7 2a
d_-= [_31 ¢2 (_'-_ 1) r2e e_l exp --r2

(6O)

which can be solved by separation of variahles.
The result is

T 2

a=--ffln[C, _q3[ 2(,yq_l)rdeC d (61)

The corresponding expression for u along the

surface of the cone follows from equation (59)
and is

A plot of the values for C, lhat result upon appli-

cation of equation (65) to the special case of a

cone-cylinder of semiapex angle r of 1/10 in a flow
with free-stream Mach number 1 is shown in

figure 14.

o4 -- i--I
cp I

u 3f®2--1
U_-- .1I 2(./_F1) }-r21nx

[c, 4,, 7In M _(w+l)_,eO A (62)

The constant of integration C_ that appears in
equations (61) and (62) is evaluated by use of the

condition mentioned in the preceding section that

the local velocity must be sonic at the shoulder;

that is, the relation given by equation (55) holds

at x=l/2. This procedure leads to the following
result:

I+AI _(7_-1 rde c

Substitution of this result for ("r in equation (62)

and a slight rearrangemeng of terms yidds the
following expression:

u .1,r_2--1 2 (rx)U_-- A/_'(7-kl) t-r In /_

The corresponding expression for the pressure
coefficient C_ on the surface of the cone follows

from equation (3) and is

_'--.,tlr '(7+ 1 )

.2 .4 .6 .8 1.0
._&x
l/2

FIGURE 14.--Pressure distribution on a cone-cylinder at
Maeh number ], as indicated by equation (65).

Examination of the result given by equation (65)

reveals that the similarity rule for the surface

pressures given by equations (9) and (12) is not

satisfied exactly. It is evident, however, that

perfect agreement would be attained if the follow-

ing approximation were introduced:

4[1--(i2)'] 4[1--!_)2!
(66)

It follows, therefore, that the similarity rule is

very nearly satisfied over most of the length of

the cone, and that the anticipated failure of the

similarity rule in the vicinity of the shoulder is

effectively confined to a very small region.

Further examination of the result given by

equation (64) reveals that the condition that

5u/bx is greater than zero specified by equation
(46) at the outset of the analysis is not sa.t.isfied at

the apex. This is evident from the following ex-
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pression derived from equations (52), (57), and
(64)

La. \uo/J. dx -

from which it can be seen that bu/_)x vanishes at
x:0. This result suggests that the range of use-

fulness of equation (65) has probalfly been ex-

ceeded in the vicinity of the apex, and recalls an

example in two-dimensional flow presented in

reference 4 in which bu/bx vanishes and then

becomes negative along the rear part of a par-
ticular airfoil.

Determination of correction for the vicinity of
the nose.--The calculation of Ihe pressure distri-

but.ion at, a Mach number near 1 on a body of

such a shape that bu/bx is positive along part of

body and negative along the remainder cannot be
accomplished by direct application of any one of

the relations developed in the preceding sections.

On the one band, the considerations based on a

differential equation of parabolic type that lead

to equation (53) permit the analysis of flows that

pans through sonic velocity, but fail when bu]bx
is zero. On the other hand, the considerations

based on a differential equation of elliptic or hy-

perbolic type that lead to equations (20) and (39)
permit the analysis of flows in which b u/bx paSsES

through zero even though the free-stream Math

number may be unity, but fail if the local velocity
is sonic. The breakdown is associated in each

case with the fact that the basic partial differential

equation, that is equation (16), (35), or (47), as-

sumes a degenerale form when X is zero. The

pressure distrilmtion along a body having the

properties described above can, nevertheless, be

calculated by considering the solution in sections

and joining together the various result.s in such a

way that. the failings associated _ith vanM)ing 9_
are avoided. This procedure, which is much

simpler than a eomt)lete re-analysis of the problem

from a sufficiently general point of view to en-

compass the entire problem in a single sweep, is
exactly the same as that already emi)loyed in

reference 4 in the analysis of the rdaled problem
in two-dimensional flow mentioned above.

The flow in the vicinity of the apex of a slender
conc-cy]inder is subsonic in naturE, hence the,

further investigation of the pressure distributio.

on this part of the body is based essentially on

equation (20). It is necessary, however, to add

some qualifying remarks about the expression to

be used for u, the solution for zero Mach number,

since the discontinuity in the slope of the surface

at. the shoulder violates the conditions imposed in

the derivation that the body bc smooth. The

particular case of a slender cone-cylinder in in-
comprehensible flow, or in linearized subsonic flow,

has been investigated by several authors and a.p-

proximate solutions involving various degrees of

refinement and complexity are presently availabIe.
It is not necessary to employ the more refined

approximations in the present application, how-

ever, since onIy the part of the result that pertains

to the forward part of the cone is to be used. A

simple expression that is adequate for the present.
purposes is one that follows h'om equation (17)

upon carrying out the indicated operations, ex-

panding the terms containing r in a power series,

and disregarding terms proportional to the third

or ]figher power of r. The resulting expression

has been given by Laitone in reference 28, and

can also be obtained directly from somewhat

more general expressions given in references 29

and 30, or on page 311 of reference 6. It is

r2 1 r 2

+ff 1_ 2

]'he corresponding expression for the pressure

coefficient Pp can be deternfined by substitution

of ttfis relation into equation (3). A measure of

the accuracy of this approximation can be had by

comparison with the results of a much more

refined analysis of incompressible flow past, a
slender cone-cylinder given 1)y Fraenkel in refer-

ence 31. The results of such a comparison are

illustrated in figure 15 for the special case of a

cone-cylinder having a semiapex angle _" of 1/10.
It can be seen that the two theories are in very

good agreement over the forward portion of the

cone.

Differentiation of equation (68) in accordance

with the procedure associated with equations (18)



SLENDER-BODY THEORY :BASED ON APPROXI_'[ATE SOLUTION OF TRANSONIC FLOW EQUATION 21

and (19) results in tile complete loss of X. in the

analysis. The subsequent integration is immedi-

ately possible, therefore, and the resulting ex-

pression differs from equation (68) only in that

tile term involving XE is replaced t)y an avbilrary
constant of integration, tMs

" -" [4(,;)(
r 2 l

The value for the constant of integration Ct is to

be selected so that the value for 'u given by equa-

tion (69) is equal to that given by equation (64)

at. tile point where the two results are joined.
The latter point is dewrmined by selecting the

point at which the two values for du/dx obtaine¢t

by differentiating equations (64) and (69) are

equal. It is found, upon following these pro-
ccdures and using the approximate reJation stated

in eqmdion (66), that the point at, whie}i the two

results are to be joined is situated at

x 1

z/2-,_ (70)

and that the expression for the constant of inte-

gralion is given by

C,-- M_--I
31_2(7+I)

T2 4

4 7'--2-1n [.,[_ (.y+l) T_eC ]

(71)

These results lead to the following expression for

Cp upon assembly and insertion into equation (3)

2 (]11_2-- 1) r.r

• ;r ;1"([,,:, ,,,3 (, &]}

(72)
L

It follows furthermore that equation (72) is to be

used to calculate the pressure distribution for the

forward third of the cone, and equation (65) is to

be used for the remainder of the length of the cone.
The magnitude of tim diflcrence between the

two results and the manner in which they join

together are illustrated in figure 1C for the special
case of a cone-cylinder of scmiapex angle r of 1/10
in a flow with free-stream Math number 1. This

figure shows the values for Cs indicated by equa-

tion (72) for the front portion of the cone together

with those indicated by equation (65) for the en-
tire length of the. cone. It. is evident from this

comparison that the two results can be joined
together in a manner that is acceptable for most

practical purposes. Although the difference be-

t.ween the two results is not large over most of

the forward third of the cone, the result indicated

by equation (72) confirms the general motivation
for the determination of a correct.ion for this

region since the values for bu/bx are negative in
thc vicini W of the apex. It may be noted, fur-

dwrmore, that the results indicatcd by equation

(72) are in perfect agreement with the similarity

rule indicated by equations (9) and (12). This is

a consequence of the systematic use of the approx-

imate relation given in equation (66).

Comparison with experimental and other theo-

retical results.-Experimental results for Cp on

t,he surface of a cone-cylinder having a semiapex
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F_c, ua_ 16.--Illustration of nose correction to pressure

distribution on _ cone-cylinder at Mach number 1.

angle of approximately 7° (r=0.1225) ]lave been

given for a range of Math mlmbers around unity

by Page in reference 32. Since it was considered

particularly important in Page's investigation to
both minimize and ascertain the degwee to which

the results are influenced by wind-ttmnel wall in-

terference, the tests were conducted in two wind

tunnels of different size, one having a test section

14 feet square, the other 2 feet. square, using a

small model, the conical part of which was 5.,50

inches in length. The results for free-stream Math

number 1 are presented in figure 17. The differ-
ence between the two sets of experimental results

is attributed by Page to wind-tunnel wall inter-

terence. Page goes on to show that substantial
interference effects remain even in the data ob-

tained in the larger wind tunnel, and finally de-

termines, by both theoretical and experimental

considerations, a curve for the pressure distribu-
tion corrected for interference. The latter results

are indicated in figure 17 by the fagged symbols.

The corresponding theoretical pressure dist.ribu-
tion calculated by use of equations (65) and (72)

is indicated by a solid line. .also included in this

figure is a plot of the pressure distribution indi-

cated by the numerical approximate solution of

-.05

Cp j
o_

.05 .........

_-- Yoshihara, re[ {53) C E_f
,, j o c .7

.Jo r ",, n/ _._<-----

m]/'_ c°j_.,,''"_',_ _tieresent r esu Ifs

/" I [ Experiment, tel.(32)

.20.//_ _ 0 2'X2' wind tunnel _
e 14' wind tunnel

c_ 14' w. t (corrected)

i 1
.2s; ._ _.a ._ .8 L.o

I/2

F1c, l:_ 17.--Pressure distribution on a cone-cylinder at

Math number 1, as indicated by present theory, by

other theoretical results, and by experiment.

Yoshihara (ref. 33) _ for a conc-c:ylinder having a
semiapex angle of 1/10 radian transformed so as

to be appropriate for a 7 ° cone by a pplie'l.tion of

the similarity rule given by equation 02). It can

be seen that the pressure distribution given by

the present theory is distinctly different from that

given by Yoshihara, bu_ is similar in form to the

experimental pressure distributions, although dis-

placed somewhat. The displacement is consider-
ably less for the tests conducted in the large wind

tunnel than in the small wind tunnel, and nearly

disappears when the results of the tests in the

large wind tunnel are corrected for interfercnce.

The foregoing results may be compared with

those obtained by application of the simple linc-

a rized theory of Oswatitsch and Keune (refs. 19
and 20) for sonic flow past a slender body of revo-

lution. In this theory, Xe is replaced by a con-

stant, such as that indicated by equation (50),

and the corresponding expression for the pressure

A correction has been applied to Yoshihara's results to allow for a slgn
error in the quadratic term of the expression for C_.
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lq,;VaE 18. Conlparison of r(,sulls indicaled by equation

(73) with lhose indlcaled by Ill(, presenl lheory for (hi,

pressure distrihulion on a cone-cylinder al Mach
1111 till)OF ].

distribution on the conical part of a sh,mle," cone-

cylinder follows directly froni equalions (51):rod
(3). It is

• 3" 2

if equation (50) is used to evaluate Xe. Figure 18

shows a plot of the numerical results for a cone-

eylindor having a semiapex angle of 7° logeiher

with the present theoretical results and the expert-
menial results of Page, as corrected for wall inie.r-
ference. It can be seen that the results indicated

by equal|on (73) are of more or less the correct

order of magnitude, lint fail to predict, even quali-

tatively, the proper behavior in the vicinity of the

shoulder. It shouhl be observed, furlhermore,

that no essential improvement would result if k,.

were replaced by some other constant thai than
indicated by equation (50) since such a change

lends only to a uniform change in C,, along the

entire length of the cone. This diftieulty of the

linearize(1 theory for sonic flow is to be expeete(1

because the region of dependence for the solution

al an arbitrars point is confined to the part of

spaee situated upstream of this petal. As a re-

suit, the influence of the part of the cone-cylinder

siluale(l t)etween the arlfitrary point and the

shouhler is not i,.qu(h,<l in the solution, although
it should be since lhe flow in this region is sub-

sonic. The present theory, on the other hand,

inehides the influence of this region in the final

result sin('e th(, eonst,m( of iidegration associated

with the (liffei'eiltial equation that results upon

replacement of hv by k(Ou/bx) is specified a( the

shouhh,r aml lhe integration proeecds in the up-

stream direction. In lhis way, the approximate

expression for C_, indiealed by equation (65), and
lherefore also that indicated by equation (72), de-

pends on conditions along lhe cnlire conical I)arl

of the eone-eylind(,r, and the influence of regions

situ,rted l)oth upstream and (lownstream from an

arl)i(rary point are ineht(]ed in the result.

Theoretical results for th(' pressur,, distril)u(ion

on a slender cone-cylinder in flows with high sul)-
sonic or sonic free-stream velocity have also been

given recently by l{usukawa in reference 34.

These results were obiahwd 1)3" application of an

approximate rehition l)etween axis3mmlelric lind

two-dimensional flOWS given previously by the

same aulhor in reference 3,5. In this way, the

sohllion for a eone-cylin(ler is related to that for

an airfoil having ordimm, s proportional to z 2 fol-

lowed by a straight section extending downst,'eam
to iufiaity. Kusukawa obtains an approximate

solution for the latter problem by considering a

flow that separates fi'om the shoulder of the airfoil

and calculates the l)ressure dislril)ution on (lie air-

foil surface with the aid of" a pressure correction

formula. This formula, which was given in a
third paper by tile same author (ref. 36), relates

the pressure at a giYen point in a compressible

I']ow lo t]lal a.t the same point in an incompressible

flow past lhe same ai,'foil. This procedure has

been applied to cahudalc the pressure distribution

on a eone-eylin(h,r having a sere|apex angle of 7 °

and the restllts are presented in l_gure 19 together

with the present l}ieorelica] results ri,lld th(: experi-

menlal resulls of Page, Tim hl, ller results are

again eorreele(| for wall interference, as no(e(| hi

the diseussion assoeialed with figure 17. IL

appears froni this comparison that the vahles for

_, eah'ulated 1)y lho meihod of Kusuknwa are 1oo

501377 59--4
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];'I(;VRF l(.t. Comparison of results indicated by Kusu-

kaw't (ref. 3-1) with those indicated by tile present theory

for the pressure distribution on a cone-cylinder at Maeh

number 1.

large at all points along the h, ngth of the cone.

Of the three prineipM steps in the derivation of
Kusukawa's results, the only one that has noL

t)een checked by a number of comparisons with

experimental or other theoretical results, and is
thus the most likely source of the discrepancy, is

the approximate relation between axisymmetrie
and two-dimensional flows. It is not likel 3 that a

significant part of the discrepancy is a conse-

quence of the use of the assumption that the flow

separates from the shoulder instead of performing

a Prandtl-._[eyer expansion armmd the corner,
since it has been shown in references 36, 37, and 5

for the case of a wedge profile tbal the nature of

lJm flow behind the shouhler has very little effect

on the pressure distribution on the part of the air-
foil ahead of the shouhler. Neither is it likely

that a significant part of the discrepancy can t)e

traced to the use of the pressure-correction
formula. This formula, which was derived by

I_usukawa by application of the WKB method of

approximation to the equations of transonic flow

themT expressed in terms of hodograph variables,

has also been fmmd indcpcn(bt_tly (except for

replacement of T+ 1 by A[_2(_+ 1) as a result of a

corresponding change in the fundamental equa-

tions of transonic flow theory) by application of

much different considerations and is presented as
equation (28) in reference 4. This result is

evaluated in references 4, 5, and 36 by numerous

comparisons with other theoretical and experi-

mental results. Of the various exemiples, the one

that is most closely associated with the present

discussion is a comparison given in reference 5

with the results i.(licatc(t by the exact solution of

the equations of transonic flow theory for sepa-

rated flow past a wedge profile puhlished recetitly
by Helliwell and Mackic in reference 37. This

comparison shows that the numerical values for

the pressure dislribution on the surface of the

wedge are hardly distinguishable, whether calcu-

lated by use of the exact or approximate formulas.

Some insight into tlw range of 3Iach numbers

surrounding unity for which the present theory
might be expected to give useful results can be

gained by noting that the indicated variation of

C_ with ]L is essentiMly proporlional Io ]/_-1

and thal the constant of proportionality is very

nearly equal to that associated with the known

invariance of local Mach number 3[ with changes
in fl'ee-stream Math aural)or ]I_ at M®=I, that

is, with the relation

The exact r(,lation for dC/dlg for .I[_ 1 for

iscnlropic flow that corresponds to equation (74) is

( dC,,'_ _ 4 2 WJ,,_ (75)
d]l_A,:=, ?+I _+1 ' "

The approximate relal ion indicated 1)y the present

theory is

( dC, "_ 4 __2r 2 (76)
dJlo.]M. =, --'f+

except a,1 the shoulder where it is

(,d:lI,_ 1, ®_1 7+ l
(77)

All three rela, lions are nearly equivalenl, since

2Cv/(v+l ) and 2r" are very small in comparison
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with 4/('y+l) for slender bodies. It follows,

therefore, thai tile variation of C, with .1[,_ indi-

cated b v tile present theory is sufl]('icnlly accurate

for all e.gineering purposes within at h,as! a smaJl

range of .Ma('h numbers surrounding JI_= 1. I!
should 1)e noted tha.t the range of 5Ia('h mmd)crs

for which the above results may be expected to

apply is much smaller than in two-dimension_)l

flows, since Guderley has indicated (rcf. 38, p. 296)

that Ihe leading term in the expansion of tim

deviation of .lf from its value for M_ = l is pro-
portional |o (.1[_--1): for planar flows and

(.11_- I) '_/'_for axisymmctric flows.

Pressure drag.---The pressure drag of a slender

eone-(,ylinder at free-stream Mach mmfl)er 1 and

vicinity can be fouml by integration of the general

relation give. by equation (13) with ihe expres-

sions given by equations (57), (65), and (72)
substiiuted for S and (7_,. This procedure leads to

the following expression for the drag coefficient

rcferred to maximum cross-section area if equa-

tion (65) is used for C_, along the enlive ]englh of
the cone:

D M2--I
(_,-- _2

(P2< U "2) [lrr2(1/2) 2] "'[_2(T+ I)

4
+F_[--I, In .I/_2(T_ _ t),¥c] (7.£)

[f equation (72) is used instead of equation (65)
to calculate C,, along the forward third of the cone,

the value for (_D is smaller ])y an amount given by

1 16
AC'_: r°" (2-{-] n 27) (79)

sO lha{

.,l_-'--I. o[ 2.JFln 64 ]

(80)

Comparison with equations (9) and (14) reveals

that both of these resnlls for C,, salisfy the sim-

ihtrity rule exactly.
The variation of C_) with r for free-stream Math

number l indicated by equal|on (80), which
reduces to the following simple form for .lf_=l

and 7- 1.4,

Cn=--r:(1.08965 _ 4 [n r) (gl)

E pe e 'L ref(32) /'""/J" i

_, !4 _md lunnel I / //_ "_-M;les {eq {83))

'_ 14' ,,,', Icorrected) /' /// I° I ' [

I bt l-co

06 | ,,']{/ .'-Presenl resuffs (eq (81))--

/" '_ Yoihlh_ro,(eq (82)i

02 L/_ -

/ I I O°lne cylinder / /

O, ,02 .04 .06 .08 I0 .12 .14 .16 ,[8
T

l:ltWRl'; 20. Vat|at|el/ of ])ressun.-drag coefilcienl wilh

|hickness ratio for a cone-cy]ind_,r at Math mmff_er I,

as indicated 1)y present theory, 1)y oiluu" thoor(,tic.fl re-

suits, and by experiment.

is shown graphi(.ally i.figurc 20. Also included

in this figure are the corresponding theoretical

resulls indicated 1)y the following equation (h, tcr-

mined t)y combination of the similarily rule and

Yoshihara's result for a cone-c.vlin(h,r having a
semiapox angle of 1,;10 red|an"

Cn=--r2(1.55 i 4 In r) (S2)

and by the following equation given IV," 5[ih, s in
reference 39.

C'.----r_(O.O91 ! 4 In r) (83)

The latter formula is derived t)y an approximate
procedure based on nmlching a solution of La-

place's equation in two dimensions for points near

flw axis with the asymplotic solution of Guderley

and Yoshihara (refs. 40 and 41) for" points at great

distances from the axis. The solutions are joined

at the sonic line, and the drag is determined 1)y
application of momenlum methods without an

intermediate calculation of the pressure distribu-

lion. Three data points for a cone-cylinder having

a sere|apex angle of 7 ° arc also included in figure
20. They represent the values el)rained from the

(,xperimental investigation of Page reported ill
reference 32. In accordance with the notation

already employed in tire display of Page's results

in figure 17, the square s3nnbol represents the

result obtaincd from tests in a 2-foot wind ttmnel,

the plain circle represents the result obtained in

a 14-fool wind lmmcl, and the flagged symbol
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representsthe latter result corre(,tedfor wall
interference.It canbeseenthat the latter result

is very close to tilt, theoretical curves computed

by means of either equation (81) or (82), lint is

noticeably less than thai indicated 1)y equation

(83).

Comparison with results for subsonic and super-
_ sonic flow, -The remainder of ill(, discussion of

the aerodynamic properties of cone-cylinders is
concerned with an examination of tile relation

between the results Wen i. the preceding section

for Math numt)er 1 and vicinity and those avail-
at)le from other sources for subsonic and supersonic

flows. Tit(' discussion is of particular interest

because possession of knowledge of the results for

Math numl)ers near unity greatly facilitates an

understanding of the process by which the pressure

(list ribulion ehanges front the form shown in figure

15 for incompressible flow to the familiar constant

pressure associated with supersonic flow.

In order to be more spceific, consider the special

case of a cone-cylinder having a semiapex angh,

of 1/10 radian. Figure 21 shows the pressure

distribution on the conical part of such a body for

the_hi#wst Ma('h numt>er for purely subsonic

flow (namely ]/:=0), for Math number 1, 'rod

--lOt l

v:JO

M_ =0- l
"L,._ '2--

-.05 "-. I
7

Cp /

i! I"

J@ _i .o

.1_ ....
25 .50 _ /5 Leo

I/2

]:ICWRE 21+ Pressure distributions on a cone-cylinder at
lhe upper and tower crilie,'d ,Mach mmd)er._ .rod at 3J'wh
1)11 lTl|)er l.

for tit(, lowest Math number for purely supersonic

fl(}w. The latter .h[a<'lt number is very nearly
1.055. Tit(' results for zero .h[a(.h nunll)er are

those given 1)3' Fraenl,:el in reference 31 and shown

previously herein in figure 15. Tit(" results for

Nlach mmdter 1 ar(, those indi(.ated tiy equation

(72) for the forward thirtl of' the cone and t)y

equation (65) for the remainder of the cone. The

results for the upper critical .Maeh nunlber are
determined from the numerical results given 1)y

Oswatits('h and Sjo(lin in rcfercnce 15 and by

Shen in ref(,rence 16 reinterpreled so as to conform
with lhe formulation of the equations of transonic

flow theory given in equations (l) thrmlgh (5).

Ahhough tit(, differences in the numeri(,al results
are small, such a (.hange is necessary l)eeause lit(,

basic equations used by Oswatitsch and Sjodin

and 1)y Shen are not only slightly (lifferent from

those used herein, I)ut are slightly different from
each other. The diff(,rence is concerned (,ntirely

with lit(' quantity M_2(y+I) that appears in

equations (4) and (5). This quantity is repla('ed

1)y T+I in the investigation of Shen and 1)y

(][=2- I)U_/(U+--a*), where a* is the critical

speed of sound, in the investigation of Oswatitsch

attd _jodin.

A plot of tit(, variation of pressure coeffwient C a
with free-stream Much nmnber .1[+ on the surfa(,e

of an infinite cone having a semiapex angle of 1/10

radian, as indicated by the theoretical amdyses of

references 15 attd 16 reinterpreted in themnnner

(h,seribed in tim preceding paragraph, is shown in

figure 22. A second curve labeh,d _'p:, is included
on this plot to illustrate tit(, variation with free-
stream Math numl)er of tit(, critical l)ressurc
coeffteient associated with the occurrence of sonic

velocity (i.e., u/U+ --- (1 --- ]I_=')/[][_2(7 + l)]) on the
surface of the cone. This curve, which is com-

puted t)y use of the expression

C_=2 3I_ 2-1 re (_4)
]I=2(y+l)

does not pass through 0 at free-stream .Xlach
munl)er 1 because of the l)articular manner in

whi(.h the sonic velocity is expressed in the approx-
imate equations of transonic flow theory. The

point of intersection of tit(, two curves determines

the uppcr critical Ma(.h mini)or and the associated

value for the surface pressure coefficient that are

shown in figure 21.

t:

#
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Fu;vnE 22. -Variation. ,ff pressure coefficient with Math

llllln|)or on the sllrf,tco of ;111 infinite cone.

If the free-strea_n Math numlwr is grealer

than the upper critical, the flow is supersonic
everywhere and the results summarized in the

preceding paragraph aplfly equally to a cone of
infinite or finite length. ]f the free-stream

._[a('h number is le._.QIhan lhe upper critical, bul

greater than unfly, the flow adjacent to the sur-
face of the cone is mibsonie and Ihe flow fiehl as a

\\hole is transonic. 'In this case, the result sum-

marized in the precvding paragraph may be ex-

peeled {o apply only to a cone of infinite length,
or to petals near the apex of a cone of finile

h, ngth, as in the ca_e of a cone-cylinder. It is

known, in pa.rtieuht_i that the velocity must be
_onie at the soltuh(i_r'7 of a cone-cylinder if the

flow is subsoni.c aloTig the surface of the cone.

Since intermediate pressures wouhl be anticipated

at intermediate points along the surface of the
eonieal part of a e6ne-cylinder, the two curves

shown in figure 22 represent the variation with

_la('|l number of t|:w upper and lower heralds

for lhe values for lhe pressure coefficient along

the conical part of a cone-cylinder having a semi-

apex angle of 1/10 tad|an. The smalh,st N[a(,]l

number for which a value for the surface pressure

is indi<'aled in figm'() 22 represents the limit of

cortical flow pa.sl an infinite cone and is the ]o_est

Math numl)er for which the bow wave is attached

to eilher an infinite or finite cone having a sere|apex

-.15
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tnfinife cone

..... Ist order,(eq (85))
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l:mu_E 23. Variation of pressure cocfflcient wilh Math

nmnber at various stations along the length of a cone-

cylinder of thickness ratio 1/10, as indicah,d by |twory.

angh, of i/10 radian. At still sn)alh,r Math

numbers, the bow wave is detached, or nonex-
ishml if the (ree-slream Xla(,h numl)er is less than

unity, and a stagnation point occurs at the apex.

The approximations of slender-l)ody theory are

not sufficient to provide a solution thai exhibits

the proper behavior at the apex, however, an<l

a logarithmic infinity appears at this point instead

of the proper value associaled with a slagnalion

point.
Further details of the transition from sul)sonie

to supersonic flow are illustrate(1 by the curves

shown in figure 23 in wldch the resulls shown in

figure 22 are repeated togiqher with additional
curves for smaller ._[a('h aural)ors. Several curves

are shown, each of which represents the variation
of the pressure coefficient with Ma('h numl)er al

a certain station along the length of a cone-

cylinder having a semiapex angh, of 1/10 radian.

The additional results shown in figure 23 at'(, from
three different sources. The small circles at zero

Math numl)er represent the values indicated

by the solution given in reference 31 l)y Fraenkcl
flw incompressible flow. The sho,'t lines at ._Iach

number 1 represent the values indicated by equa-

lions (65) and (72) of the presenl theory. The

dashed lines at subsonic .\lath numbers represent

the variation of pressure coefficient with NIa('h

number calculated by use of the following ex-

pression deriw,d by combination of the results of

Fraenkel Cp_r for incompressil)h, flow and the
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influence of Math number indicated t)y equation

(18) with Xr. replaced by 1--.lir_:

G=-2_' ],, _,,"_ + G,,, (85)

It should be noted that results calculated ill this

way are not of the same quality as the remainder
of the results shown in figure 23, since they repre-

sent a solution of the linenrized equations of

subsonic flow rather than the nonlinear equations

of transonic flow theory. One important conse-

quence of this fact that is not apparent from this

plot is that the value indicated for the pressure
coefficient at the shoulder is infinite rather than
the finite value associated with the occurrence

of sonic velocity The subsonic results indicated
on this plot for points removed from the shouhler

are probahly in at least qualitative a_cement

with those that would be indicated 1)3" the solution

of the nonlinear equations of transonic flow theory,

provided the free-stream Maeh number does not

approach too closely to unity. It may bc noted,
in particular, that the effect of Math number

indicated by equation (85) is simply to shift
the entire curve representing the pressure distribv-
(ion. A similar result would also occur if the

present method of approximation were applied to

equation (18) to determine an approximate soIu-

lion of the equations of transonic flow theory.

The reason is that the entire term containing X
is lost in the initial differentiation and is, in

effect, replaced by an unknown constant upon

integration of the differential equation. It would

be necessary, however, to include some additional
refinement in the details of the solution at the

shoulder before a result would be obtained that

exhibits the proper t)ehavior in the vicinity of

this point.

Additional insight into the m_ture of the

variation xsith Math number of the pressure

distribution on a cone-cylinder can be gained by

examination of the experimental data of Page for

a cone-cylimler having a semiapex angle of 7 °,

Figure 24 has been included, accordingly, to sum-

marize the theoretical and experimental results

for three representative stations along the length

of the cone. The plain data points represent thc
vMues measured in a 2-foot wind tunnel. The

flagged data points represent the values measured
on the same model in a 14-foot wind tunnel. It

can he seen that the two sets of results are in good

agreement at Math numbers well renmved from

unity, but that substantial differences occur at
Maeh numbers near rarity. As noted previously

in the discussion of these same data, Page attrib-
utes these differences to wind-tunnel wall inter-

ference, and proceeds to determine a theoretical

estimate of the necessary corrections that must be

applied in order to simulate free-air conditions
with free-stream Math numt)er 1. The solid data

points represent the results from the 14-foot wind

tunnel corrected in this way for wall interference.
Also im'luded in this sketch are a number of solid

and dashed curves representing theoretical results
calctflated in the same manner as described in

connection with figure 23. It can t)e seen that the

experimental data support the remarks of the

preceding paragraph concerning the general nature

of the transition fi'om subsonic to supersonic flow

indicated by the various theoretical results. These
data also indicate some of the difficulties en-

cotmtered iu the determination of experimental
data for free-stream Mach mmlt)er 1 that are

essentially free of wind-tunnel wall interference.
Although substantial gaps remain for which the

drag of a cone-cylinder cannot be computed at the

present time, it in possible to sketch the variation

of drag with Mach number from the results and

discussion of the preceding paragraphs. The

basic framework is provided by three (.lasses of

results; namely, those for zero N Inch number, those
for Maeh numbers near unity, a_(l those for Math

numbers greater than the upper critical. At zero
N[aeh number the drag is zero in accordance with

D'Alembert's paradox. At N[ach numbers near

unity the drag is given by equation (81). A1

.Maeh numbers greater than the upper critical, the

drag coefficient is the same as for an infinite cone,

_md is equal numerically to the value for ('_ shown

in figure 22. These results arc illustrated in figure

25 by solid lines and a small circle. The dashed
line at ._laeh numbers less than the upper critical,

but greater than the Math number for shock

attachment, represents the values for the drag
coefficient of an infinite cone. It follox_s from

the discussion of the pressure distribution given in

the preceding pages that the drag coefficient for a

cone-cylinder is h,ss than that for an infinite cone.
The dashed line at subsonic Math numbers repre-

sents the values for the drag coefficient that are

associated with the pressure distribution indicated

by equation (85). These values are given by tt,e
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Experiment ref.(32) .082 .486 .942

2'x2' wind tunnel ,3 [] A
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Variation of pressure coefficient with Mach munher at various stations along ill(, length of a cone-cylinder

of thickness ratio 0.1225, as indicah,d l)y theory and hy experimmd.
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I"IIWRE 25. Variation of pressure-drag cueffieienl with

Mach number for a cone-¢'ylin(h,r of thickness ratio 1:10,

as indicated by theory.

following relation oblained when equalions (13)
and (,',15) are coml)incd

C,,=--2r 2 In _,1--_7_]/_: (86)

Allhough il is apparent from the discussion in the

preceding paragraphs lhal the latter results are
not as reli_hle as lhc remainder of lhe results

shown in figure 25, they arc inclu(h,d because lh(,y
disp]ay the proper qualitative trend until the .Math

number approaches very neag to unity. There is
considerable likelihood thal the quantitative
values are too snmll at Math mmllmrs much less

lhan unity, however, since lhe pressure dish'ibu-
lions on which the calcuhltions are based indicate a

value for C'p of negative infinity at the shoulder
rather lhan the proper finite value associah,d with

lhe occurrence of sonic velocity.

APPLICATION TO THE FRONT HALF OF A PARABOLIC-ARC

BODY

As a first _H)pli('ation of the present theory re,"
flow with free-stream Math number near 1 around

a smooth t)ody, consider the case of lhc fronl half

of _lparabolic-arc body of rcvolulion of length/and

diameter d. The expressions for the ordinates R,

the cross-section area £', and the location of the

points at which S"(x) vanishes are given })y equa-

tions (25), (26), and (27). Attention is confined

in this section, however, to the part of the body
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situated between x=0 and x=I/2. Tile pressure -.3

distribution for this part of the body is indepen(1-

erd within wide limits, of the shape of the rear

an([ is appropriate, in parii('ular, for eilher th(, -2
case in which the rear part of the body continues

as a parabolic-arc body or in whi(.h it continues as

a cylinder exlending downstream from x=l/2

For the special ease descril)ed above, tile ordinary Co
differential equation for u on the surface of an

arbitrary body of rev(dution given by equation o

(53b) reduces to the folh>wing form:

d F,.. _[_2-1 'l s's" (4r E _

+ 3[_'2--1 S" ,1[_2(7+1)Se c
.][_(_-+1) 4rr In 4rx .2

As described in connection with the discussion of

the properlies of equation (53) for smooth bodies,
the ealculalion of the solution of equation (87) is

slart(,d by use of Ihe assumption that u is analyti('

at lhe singular point where S"(x) vanishes. The
solution can thus be expan(h,d in a Taylor's series

from which the values for u can be readily eal(:u-

lated for points slightly removed fl'om the singular

petal. Once these values are known, the solution
for the remainder of the body can t)e eah'ulaled

numerically by NIihw's melho(l. The correspond-

ing values for tile pressure coefficient can bc

(.alculah'd directly therefrom with the aid of

equation (3).

0omparison with experimental and other theo-
retical results. Experimental results for the

pressure (list ribulion at frce-slream ,XIach number
1 on the front half of parat)olie-arc body of

fineness ratio (3 folh)wed t)y a cylindrical section

have been given in reference 19 by Oswatitsch and
Keune. These restilts are presented graphically

in figure 26 together with the llleoreli('al pressure
distribution cah'ulated in the manner describe(t

at)eve. It can be seen that the agreement be-

tween lhe theoretical and experimenlal resulls is

sat isfa('lor',- for mosl t)m'poses.
Attention is ealle(t, howev(,r, to t!w fact men-

tioned t)reviously that the simI)ler approximation
(if references 19 and 20 in which X_, is replaced t)y

the constant indi(,ated |)y equation (50) also leads

to theoretical results that agree well with tile

/
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I
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-- Present resbfts

e Experiment, ref f19)

.2 .5

Ft_:vrt__.: 26. Pressure distribution on the front half of n

parabolic-arc body of fineness rat io 6 al Math number I,

as indicated by present ttwory and by experiment.

experimental pressure distril)ution shown in figure
26. The resuhs of su(-h a (.ahmlalion are shown

in figure 26 together with ill(, theoretical an<l

experimental results from figure 26. Also in-

cluded is another curve cah.ulaled with constant

X;, evaluated using equation (50) with a2=-1

rather than _. These two values for a2 are those

considered originally in references 19 and 20. It

is shown in these references that both have meril,

but the value of a2=0.50 is recommended because

it is superior in the tr(,al meat of certain important

(h, tails of the flow fiehl. It is also slated that

according to the similarity rule, the parameler



SLENDER-BODYTHEORYBASEDONAPPROXIMATESOLUTIONOFTRANSONICFLOWEQUATION31

-- Present results

---- Oswotitsch 8_ Keune,o2:!/2, ref.09)

.6 ............ ,5'2=1.0, ref (19)

----- Moeder 8, Thommen, ref(26)

o Experiment,ref (19)
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FI(IURE 27.--Pressure di.,.'tributlon on ill(. fronl, half of a.

parabolic-are body of fineness ratio 6 at Ma{.h nunlbor l,
as indicated by pre.ci,nt ttmory, t,y nxperim{,nt, and by
otli(,r theoretical results.

a 2 depends on the shape, but not the t]dckncss

ratio of the body.
Kcune has modified these conclusions in more

recent publications (refs. 21, 22, and 23), and has

suggested, on the basis of considerations relating
to the mass flow, the selection of such a vahie for

a _ that the value for Xp agrees with half the value

for (3'4-1)_tU_ at the sonic point. ]t is further
shox_m that this procedure leads to vahies for a2

of 0.455 and 0.28 for parabolic-arc bodies having
tJlickncss ratios v of 0.146 and 0.073.

Maeder and Thommcn have independently
proposed a similar procedure, but without the

factor }_, and have presented a curve in reference

26 from which the resulting values for a 2 can be

readily determined for any parabolic-arc body

having a thickness ratio less than 0.25. This

curve leads to the following wdues for a 2, 0.274,

0.248, and 0.135, for parabolic-arc bodies having

thickness ratios of Jg, 0.146, and 0.073. Although

these values should be exactly half those indicated

by Keune for a body of the same thickness ratio,

it may be observed that the values are actually

related in a slightly different manner. The pres-

ent authors have not sought the source of this

discrepancy since the differences are much smaller
than those associated with tllc factor _/that exists

between the intended values. The pressure dis-

tribution on the front half of a parabolic-are body
of fineness ratio 6 has been computed using the

value for a = given by Maeder and Thommen, and

is presented in figure 27. It is evident from
examination of the various results shown in this

figure that the procedure adopted for the selection

of a suitable value for a2 has a significant effect on

the resulting pressure distribution. Although

certain of these procedures lead to results of good

quality for the pressure distributions on the front

half of a parabolic-are body, it. shouhl be recalled
that no selection of a constant for Xe can lead to a

reasonable pressure distribution on a cone-cylinder.

Theoretical pressure distributions for the front

halves of parabolic-are bodies of revolution of

fineness ratio 6 _,_, 10, 12, and 14 in flows with
free-stream :_[aeh ]mml)cr 1 have also been calcu-

lated by means of the present theory. These

results, together with those given above for the

body of fineness ratio 6, are presented in graphi{'al

form in figure 28. The numerical values for all

five cases are given in tal}le IV. It. should be
observed tllat only l|ie vt_hies for xll between 0

and 0.50 are to be considered in the present dis-

cussion. This particular family of bodies has been

selected because experimental l}ressurc distribu-

tions are ava ilabh, from the investigalions of

references 14 and 11. In both eases, tests wore
conducted on bodies that more nearly approximate

comple{e bodies than half bodies, but the resnlis

should be suita])lc for comparison with the present

theoretical results because the pressures on the

fi'ont part of such a body do not depend, at free-

stream 5[ach numl)er 1, on the shape of the rear.

The results of such a comparison are shown in

figure 29. Although it is evident from the scatter

of the e.nperimcntal data that the relative accuracy
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F]CURE 2S.--Pressure distributions on the front halves of

a series of parabolic-are bodies of various fineness ratios

at Maeh number 1, as indicated by present theory.

of the experimental results diminishes with increas-

ing fineness ratio, these comparisons show that
the theoretical and experimental resulls are in

essential agreement.

The results presen{ed in the preceding para-

g/'aph indicate that tile magnitudes of the vahles
for C_ are strongly influenced by tile fineness ratio.

The simihtrity rule given by equation (12) in-

dicates the existence of such an effect, and figure

30 is included to illustrate quantitatively flu,

degree to which the present results conform to the

similarity rule. In this figure the values for Cp
for each of the bodies are converted to the corre-

sponding values for a body of fineness ratio 10 by

use of equation (12). If the present results con-

formed perfectly to tire similarity rule, the results

for all five bodies would define a single curve• It

can be seen that the present results when so pre-

sented do not quite define a single curve, but the
differences between the various curves are small.

This indicates that the present results for lhe
pressure distril)utions on the fl'ont halves of a

series of parabolic-arc bodies of different fineness

ratios are related, at free-stream Math number 1,
in a manner that very nearly conforms with the

similarity rule. This conclusion is similar to that

for the cone-cylinder at free-stream Math number

1, but quite different from that for the parabolic-

are body at Math m_mbers in the vicinity of the
critical.

Pressure drag. Once the pressure distribution

on tile fl'ont half of a slender parabolic-arc body
has been calculated, the corresponding value for

the pressure drag can be found immediately by

numerical integration of the general relations

given by equation (13). The necessary calcula-
tions have been carried out: for each of the five

cases considered in this section, and the re._ulting
v_lues for C,--D/[(o_/2)U_°'S,,,] at Math number
1 are

[', - e_ I 1 I 12

_/d u 1 n,'. 0 ' 16 O. 01031 i

I

These values arc plotted as a function of r in figure
31 to illustrate the effect of thickness ratio on CD.

It can be seen from examination of these values,

or by inspection of figure 32 in which CD/r2 is

plotted as a function of r, tlmt CD is very nearly

proportional 1o the square of r as indicated t)y

the similarity rule given in equation (14).

Experimental values for the pressure drag can

be obtained by a similar integration of equation

(13) using the measured values for Cp given in
references 11, 14, and 19, and repeated here in

figures 29 and 26. Osw_titsch and Keune have

already given the results of such a calculation in
reference 19 for the case of the front, half of a

parabolic-arc body of fineness ratio 6 followed by

a cylindrical body. Their result that Cv equals

0.058 compares very favorably with the corre-

sponding value of 0.05988 indicated by the

present theory. Experimental values for Cv have
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Fracas 29.--Pressure distributions on the front halves of parabolic-arc bodies of various fineness ratios at Mach number

], as indicated by present theory and by experiment.

also been determined for each of lhe other five

bodies for which measured pressure distributions

arc presented in figure 29. The results are in-

cluded in figures 31 and 32. Attention is directed,

however, to the fact that the scatter in the meas-

ured values for Cv for the bodies of fineness ratio

10, 12, and particularly 14 is such that considerable

uncertainty exists in the wdues for Cv. An indi-

cation of the estimated magnitude of the un-

certainty due to this cause is provided by tim
vertical lines attached to the symbols. It can
be seen that the unce,'tai,dies associated will,

seath, r in the pressure-distribution data are not

sufficiently great to account for the result, obvi-

ously incorrect, that the drag of the body of fine-

ness ratio 14 is negative. It appears quite possible,

on 1]m basis of the results for the cone-cylinder

presented in reference 32 and shown here in
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FmVRE 30.--Pressure distribution on lhe front half of a

parabolic-arc body of fineness ratio 10, as obtained by

direct calculation using the present theory and by use

of tile similarity ruh'.

figures 17 and 24, fliat this property of the e.xocri-
mental data may be associated with the effects
of wind-tunnel wall interference. The results in

figures 31 and 32 are in agreement with the facl
that the effects of wind-tunnel wall interference

at free-stream 5[ach number 1 are of greater
importance, relatiw_ to the quantities measured,
for thln bodies than for thick bodies.

It is of interest at this point to compare the

experimental and theoretical values for CD Wen
in the preceding paragraph with those indicated
by the ]inearized theory of sonic flow _vcn in
references 19 and 20. This theory leads to a simph,
rule for the calculation of the drag of half bodies
that states that the drag does not depend on the
wduc selected for a2 in equation (50) and is equal
to exactly half of the value indicated by linearizcd
supersonic theory. This rule, when applied to
the front half of a parabolic-arc body of thickness
ratio T, restflts in the following simple expression
for Co:

CD= (7i3) r2 (88)

Curves illustrating the variation of CL) with r
indicated by this result have been included in

figures 31 and 32, from which it can be seen that

Fronl _C arc M='IO

.05 1 Experiment! 1 i/ i :

.04 Ref.(14) " -

:i i / <1 I !.(35 '] , _-Present resulls .

b/

I ie :

-'020 .02 .04 .06 .08 1.0 1.2 t.4 1.6 1.8
T

FIGURE 3l.--Variation of pressure-drag coefficient with

thickness ratio for the front half of a parabolic-arc body

at Mach number 1, as indicated by present theory, by

other theoretical results, and by experiment.

the values indicated by equation (88) are some-
what larger than either the experimental values
or the calculated values indicated by the present
theory. Before leaving this topic, it should be
mentioned that Keunc states briefly (ref. 23) that
a more elaborate analysis of tlfis case in which
the quantity a_ is replaced by it function of x,
rather than by a constant, leads to a value for
CD that is about 10 percent smaller than indicated
by equation (88). This result corresponds very
closely with the results of the pre._cnt calculations.

The approximate theory of Miles (rcf. 39)
described briefly here in the section on cone-

- _ L--Oswa_itsch 8,' Keune,teq (88i) •

--- [- 4..--
i / / 1. <> / // I
i / / tY I ,_ "_" Presenl re_lls

-' i Ft I
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FIGURE 32. Variation of CD/r _ with thickness ratio for

tlm front half of a parabolic-arc body at Mach number

1_ as indicah,d by present theory, by other theoretical

results, and by experiment.
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cylinders also contains a general expression for

tile calculation of the pressure drag of the forepart

of a smooth slender body of revolution in a flow

with free-stream Math number 1. Miles' expres-

sion, which appears to lead, in general, to very

small values for the drag of smooth bodies, reduces

to tile following expression when applied to the
front half of a parabolic-arc body:

C,-- 0.0735r 2 (89)

This result is also plotted in figures 31 and 32

from which it is immediately apparent that these
values for CD are much smaller than either tile

experimental values or the calculated values

indicated by file present, theory or by the theory
of Oswatitseh and Keune.

APPLICATION TO COMPLETE PARABOLIC-ARC BODY

The calculation of tile pressure distribution

along the entire length of a complete parabolic-are

body for free-stream Maeh number 1 represents an
interesting applica.tion of the procedures described

in the preceding pages. The pressure distribution

on the fl'ont half of snell a body is, of course, the

same as discussed at length in the preceding see-
tion. Although tim procedures can be used to

calculate tile pressures at points somewhat rear-

ward of the middle of the body, they cannot be

used to calculate the pressures along tile entire

length of the body. The reason is that the velocity
reaches a ma.,cimum at a point somewhat rearward

of tile middle, and then decreases continuously

along the remainder of the body, thereby violating

tile condition imposed by equation (46) that bu/bx

or Xp be positive. The flow, moreover, is subsonic
in tile vicinity of the rear tip.

The pressure distribution along the entire length
of a parabolic-arc body can, nevertheless, be calcu-

lated 1)3" considering tile solution in sections and
joining together lhe various results in tile same

manner as described for the cone-cylinder. This

procedure is quite analogous to the procedures
commonly emlfioyed in many other theoretical in-

vestigations of transonic flows in which the condi-

tions in the subsonic region and a restricted part of

the adjacent supersonic region are computed using
hodograph or relaxation methods and the solution

for the remainder of the supersonic region is com-
puted by the meflmd of characteristics. The fol-

lowing discussion is organized accordingly into

three parts concerned, respectively, with transition

through sonic velocity on the forebody, supersonic
flow on the afterbody, and subsonic flow in the

vicinity of the rear tip.

Transition through sonic velocity on the fore-

body.--A principal feature of the flow on the

forward part of a body is the smooth transition

from subsonic velocities at the nose to supersonic

velocities near the middle of the body. It. is amply

demonstrated in the preceding section that equa-

tion (87) can be used together with equation (3) to
calculate the pressure distribution on tile front tufif

of a parabolic-are body of revolution. The same
procedures can also be applied to c'deulate the

pressures at. points somewhat rearward of the
middle. Such calculations have been made for

each of the five parabolic-arc bodies of fineness

ratio 6, 6 _,_, 10, 12, and 14 for wlfich experimental
results are available from references 11 and 14.

Tile calculated results are summarized in table IV.

The pressure distribution cannot be calculated in

this way for points _flong the entire rear half of the

body since, as can be observed by examination of

equation (87), a discontinuity in du/dx, and hence

the slope of t|_e pressure distribution curve, occurs

a.t the point on the rear of the body where S"O')

vanishes. This equation shows, moreover, that

du/dz is zero just upstream and infinite just down-

stream of this point. The property is symptonmt ie
of the breakdown of the approximation furnished

by equation (87) and signals that the use of this

relation shouhl be terminated at some point more

forward along the length of the body. As a conse-
quence, the results enumerated in table IV for four

of the five bodies considered are terminated well

forward of the point on the rear of the body where

S"(z) vanishes. The results for the fifth body,
namely that of fnencss ratio 10, are given for all

points back to that at which S"(x) vanishes in
order to illustrate certain features in the discussion

of the supersonic flow on tim afterbody. The
results for the body of fineness ratio 10 are shown

graphically in figure 33.

Supersonic flow on the afterbody.--The calcula-

tion of tile pressure distribution on the portion of
the remainder of the body along which tim local

velocity is supersonic can be continued by appli-

cation of equa.tion (42) rather than equation (87).

Inasnmch as these two equations are based on

somewhat different approximations, tile two sets

of results cannot, be expected to continue analyli-
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FIGVRr: 33.--Pressure distribution on tim forward part of

a parabolic-arc body of revolution at Mach number 1,

as indicated by equation (87).

tally into each other at the point at which the two

sets of results are joined. The determination of

the point at which both C, and d(7,/dx match can

be accomplished in a simple manner once a series

of values for u for various stations along the length

of the body has been calculated by numerical inte-

gration of equation (87). Substitution of these
values into equations (42) and (87) ]cads 1o two

sets of vahles for du/dx, each of which defines a

single curve when plotted as a function of x/l as

illustrated in figure 34 for the special case of the

.18 -----

J6 • ..,._, --

.14 _

.10 -- --

Ud:lO

_,o,.oI I

"\. t .<iEq. 42>> ,

t

X (Eq. (137)} _ fI '
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FIGURE 34.--illustration of graphical technique for select-

ing the point at which the solution obtained by equation

(42) is to be joined to that obtained by equation (87).

parabolic-arc body of fineness ratio 10. As can be

seen, the two curves intersect at a certain point.,
in this case situated at a. value for xfl of about

0.542. Since the two vahws for u and du/dx and

hence C, and dCp/dx are the same at the point of
intersection whether calculated using equations

(42) or (87), this point determines the desired loca-

lion of (be point at w])ich the two solutions are to

be joined. The procedure has been followed in the

present calculations except for (he slight strut)lift-

cation introduced 1)y joining the solutions at, the
nearest point for which wdues for C. are given in

table IV. This simplifi('ation results in a slight

mismatching of the values for dCp,&tx, but the
effects are small since it follows from the fact that

these values for C_ are given for every 2 percent of

the body length that the point at: which tile two

solutions arc joined is at most only 1 percent of

tile body length from the point at which the two
values for dCSclx are exactly the same.

Once the point at which the solulions are to be

joined and the associated value for u at this point

are determined, tile calculation of the pressure dis-

tribution on the remainder of the region of super-
sonic How on tile afterbody can proceed in a

straightforward manner })y application of any of

the many standard methods available for the nu-

merical integration of equation (42). Table V pre-

sents the results of such calculations performed by

the method of Milne (ref. 9) described in a previ-

ous section of this report,, h)r each of the five
parabolic-arc bodies of fineness ratio 6, 6 _!2, 10,

12, and 14. The calculations for the body of fine-

ness ratio 10 were carried out for points situated

upstream as well as downstream of the point at.

54.2 percent of the body length at which the solu-

tions were joined in order to investigate the degree

to which the two approximate solutions overlap.

The results are shown graphically in figure 35. It

i _ i , -<

'i ....

X,l

FlntrRE 35.--l'res,_ure distribution on a parabolic-are

body of rvvolution al Math mtmber I as indicated by

equation (87) and by equation (42).

can be seen that the two sets of results agree very

well over a substantial fraction of the length of the

body. They indicate thai, the selection of (he

point at, which the solutions are joined is not ct'iti-
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eal, and tllat the appro_mation afforded lly use of

either equation (42) or (£7) is very nearly the
same provided tlle vahies for neither u nor bu/b.r,

approacqt tot) dose to zero.

It: can be seen from tit(: results presented above

that the region of supersonic flow does not extend

all the way to the real' lip of the body. Instead,

the flow decelerates and reaches sonic velocity

at a point somewhat forward of the rear tip, for

example at 86.3 percent of the body length.
The procedures described above terminate al,

this point since u is zero and the quanlity

ln(,ll,_2--1 q-ku) in equation (42) leads, at _1[_ I,

to a logarithmic infinity in du/dx.

The termination of the supersonic region for-

ward of the roar tip of a parabolic-arc body and

the, great increase in the value of du/dz as the
sonic point is approached are similar to the be-

havior indicated both by the present calculations

for Math mHnbers greater than unity an(1 by

results calculated by the method of characteristics

in reference 42. Most of the examph,s presented

are for .\[ach numbers considerably greater than

unity, but one example is included in this reference

in which an approximate solution is determined
for _ parabolic-arc body of fineness ratio 6 in a

flow with free-stream Maeh number 1. Inasmuch

as the method of characteristics is appropriate
only in a region where the flow is supersonic, it: is

necessary in this particular example to introduce

some other procedure for the determination of

t_he solution for the region of subsonic flow that

exists in the vicinity of the forward part of the.

body. It is important that a good approximation

be used since, the results not only determine the
values for the subsonic region, but also affect the

values calculated by the supersonic region as well.

The reason is that the initial values required to
start the calculations with the method of charac-

teristics at. the upstream boundary of the super-

sonic region must 1)e provided by the solution for
the subsonic region. The particular method

used by Oswatitsch was the linearized theor 5 for
sonic flow described in references 19 and 20 which

fi/llows fi'om the equations giver herein upon

replacing hp in equation (47) by the consta.nt

value indicated by equation (50). The results

given by Oswatitsch are shown in figure 36

together with the corresponding results indicated

by the present calculations for the same body.
It can bc seen thag the two theoretical results are

c "_l

rJ r
4 t, + 1

7(_" .1 ,2 .3 ,4 .5 - ,6 .7 .8 .9 1.O
x/l

FIt3URE 36.--Pressure distribution on a parabolic-arc

body of rew_lution at Mach number 1 as indicated by

present theory and by other theoretical results.

in essential agreement with regard to the details

of the behavior of the solution in the vicinity of
the rear sonic point. The slight discrepancies
between the two results over the forward and

middle portions of the body arc associated with

the selection of an appropriate wflue for Xp, and

would be less if the calculations were repeated

using a smaller value for M. as advocated by
Keune in references 21, 22, and 23 and by Maeder

and Thommen in reference 26, as discussed in

connection with figures 26 and 27.

Subsonic flow near rear tip. -The resuIts pre-

sented in the preceding section clearly indicate
t.haL the flow along the surface of a parabolic-arc

body of revolution deceler_rtes smoothly and

eontimmusly fi'om a maximum supersonic velocity
at about two-thirds of the body length to sonic

velocity at, a petal definitely forward of the rear

tip. It is known, furthermore, that the flow in

the immediate vicinity of the rear tip must be
subsonic. Little more has been established pre-

viously regarding the nature of the solu6on in this

region. It is evident, however, that two possi-

bilities axis! regarding the nature of the h'ansition

fi'om supersonic to subsonic flow along tile body

surface. The transition may be accomplished in

a discontinuous manner involving one or more
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shock waves that extend to the body surface, as
is familiar in two-dimensional flows at Math

nunlbers somewhat greater than the critical (see

ref. 13 for a theoretical analysis of such cases);

or it may be accomplished in a continuous manner

with a smooth deceleration lhrough sonic velocity,

as is indi('ated by the first- and second-order

approximations for supersonic flow past a para-
bolic-arc body illuslrated in figures 11 and 12. It

should be understood that shock waves are present

in the flow field in both eases, but do not extend

to the surface of the body in the case of smooth

deceleration through sonic velocity.

It is assumed in the present investigation that
the transition from supersonic to subsonic flow

along the surface of tlw body is of a continuous
nature and that the results calculated in the

preceding section are applicahle right up to the

sonic point. It is assumed, furthermore, that

the results fox" the subsonic flow along the remain-

der of the body can be calculated by means of

equa.tion (29). This equation is useful for the
anMysis of subsonic flows, but cannot be applied

to supersonic flows because of the presence of the
term ln(1--M_2--ku). This term leads, more-

over, to a logarithmically infinite value of du/dx

at the sonic point. It follows from these prop-
erties that the two sets of values for the ordinate

u. and the slope du/dx calculated by use of equa-

tions (29) and (42) match when joined at the
sonic point. The two sets of results do not

overlap, as in the cases described in the preceding

section, since the regions of applicability of

equations (29) and (42) bottt terminttte abruptly

at the sonic point. It should be remarked

before proceeding to the discussion of the detailed

results of the ttow at the rear of the body that

the logarithmically infinite deceleration at the

sonic point is not altogether unreasonable phys-
ically since it may be that such a behavior

represents the vanishing influence of a shock
wave that exists in the flow field but does not,

quiie extend to the body surfaee. The experi-

mental investigation of such a detail would be a

difficult task because the presence of the boundary

layer would probably modify the phenomenon

to such an extent that considerable uncertainty
would be introduced into the interpretation of
the results.

The pressure distribution on the rear of each of

the five parabolic-arc bodies considered in the pro-

ceding sections has been calculated by use of equa-
tion (29) in the manner described above. The re-

sults were determined again by application of

Milne's method. The only part of the calculation

that remains to be described is the detail by which

the starting value was determined so that the solu-

tion of equation (29) would indicate the same

sonic point as the solution of equation (49). It is

immediately-evident that a special treatment of
some sort is_neccssary because the occurrence of

infinite values for du/dz at the sonic point imposes

a definite limit on the radius of convergence of a

power series expansion of the solution such as em-

ployed herein in the previous at)plications of
Milne's method.

The first step in the procedures that were used

in the present calculations is to increase the pre-

cision with which the sonic point is located. This

is desirable because the results for the supersonic

region summarized in table V were calculated for

intervals of 2 percent of the body length, and

thereby leave a possible uncertainty of nearly

equal magnitude in the precise location of the

sonic point. The desired increase in precision

could, of course, be attainable by introducing
smaller intervals in the applieation of Milne's

method, but this is rather inconvenient because it

is necessary to repeat, the starting procedure or to

use interpolation formulas every time a smaller

interval is introduced. Although such a reduc-
tion in interval size can be more readily accom-

plished with certain alternative numerical meth-

ods such as the Runge-Kutta method, the desired
increase in detail near the sonic point was achieved

in the present calculations by a earefuI application

of the numerical and graphical method of isoclines.

This procedure has special merit in the present

application since it is not only capable of locating

the sonic point when proceeding in the downstream
direction from the last point in the supersonic

region for which the results have been calculated

by Milne's method, but is also very convenient for
the continuation of the caleulation into the sub-

sonic region for a sufficient distance downstream

from the sonic point that the remainder of the

calculation can again be accomplished with the
numerical method of Milne.

The nature of the singularity at. the sonic point,
and the details of the manner hi which the solu-

tions of equations (29) and (42) match when

joined at this point, are illustrated in the series of
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successive enlargements of the isocline plots shown

in figure 37 for the body of fineness ratio 10. It

can be seen that there is an extremely small region

in which the values for du/dx are large and that
the values for du/dx are remarkably similar at

short distances upstream and downstream from

the sonic point. The method of isoclines was used

to calculate the solution for the portion of the

body that extends from about 85 to 89 percent of

the body length. The results for the remainder

of the body were calculated using the method of

Milne with intervals of 1 percent of the body

length. The numerical results are summarized in
table VI, and a plot of the pressure distribution

for the complete parabolic-arc body of fineness

ratio 10 is shown in figure 38. It can be seen from

this plot that the local effects associated with the

infinite deceleration at the sonic point are of such

small magnitude and extent that they cannot be

represented on a plot of this scale. The corre-

sponding results for the rear parts of the other
parabolic-arc bodies of fineness ratio 6, 6 _/2, 12,

and 14 have also been computed in the same way.
The results of these calculations are also summa-

rized in table VI.

Summary and discussion of results.--The calcu-

lations described in the preceding sections provide
a set of values for the pressure coefficient Cp at

free-stream Mach number 1 for points spaced at

intervals no greater than 2 percent of the body

length along the surface of each of five parabolic-
arc bodies having fineness ratios of 6, 6_2, 10, 12,

and 14. These results are shown graphically in

figure 39 together with the experimental results
from references 11 and 14 for parabolic-arc bodies

truncated at about 5/6 of the length, as indicated

by the dashed lines. It can be seen that the the-

oretical and experimental results are in essential

agreement, and that the principal discrepancies

are confined in each ease to a small region in the

immediate vicinity of the base of the body. This

discrepancy is undoubtedly associated, for the
bodies of fineness ratio 6 and 6V_, with the occur-
rence of a shock wave that must be detached fl'om

the corner because the local Maeh number is too

small. The situation is not. so clear for the other

bodies, although it would appear from inspection

of the data shown in figure 5 that the phenomena
involved are not too different from those for the

bodies of fineness ratio 6 and _.

Comparison of the calculated results for the

parabolic-arc bodies of different fineness ratio
reveals that the values for the pressure coefficient

Cp vary with thickness ratio r in a manner that is
very nearly in accordance with the similarity rule

given by equation (12). This fact is illustrated

in figure 40 in which are plotted the pressure dis-

tribution for a parabolic-arc body of fineness ratio

10 as determined by direct calculation, and by use

of the similarity rtfle together with the calculations
for the bodies of fineness ratio 6, 6_/2, 12, and 14.

The five curves would coalesce to form a single

curve if the results of the present calculations were

in perfect agreement with the similarity rule. It
can be seen that the five curves do not coalesce

perfectly onto one line, but the deviations there-

from are small for the range of thickness ratios
considered. This result is very similar to that

stated previously in the discussion of the cone-

cylinder at free-stream Mach number l, but quite
different from the behavior of the present results

for Mach numbers in the vicinity of the critical.

Pressure drag.--A value for the pressure drag

for each of the five parabolic-arc bodies for which

the pressure distribution is given in the preceding
section has been calculated by numerical integra-

tion of equation (13). The resulting values for
CD=D/[(p_/2) U®2S_] at Mach number 1 are

'/_2_Z_ _2°] '__2_
o. f0. to.0   310.I

14

O. 04675

These values are plotted as a function of r in figure
41. The corresponding values of CD/r 2 are plotted

as a function of r in figure 42 to illustrate that

CD is very nearly proportional to the square of r as

indicated by the similarity rule given by equa-

tion (14).

Two additional sets of values for CD for com-

plete parabolic-arc bodies are also included in

figures 41 and 42 for purposes of comparison.
Both of these shouhl be considered as more ap-

pro.,dmate than the present results since they are

derived through considerations involving the

linearized theory for sonic flow given by Oswatitsch

and Keune in references 19 and 20. Straight-

forward application of that theory to a body that

is pointed at the nose and is either pointed or

cylindrical at the stern leads to the simple con-
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FmURE 38.--Pressure dibtribution on a parabolic-are

body of revolution at Maeh number 1 as indicated by

present theory.

clusion that the value for CD at free-stream _[ach

number 1 is exactly half that indicated for super-

sonic 5[ach numbers by linearized compressible

flow theory. This result holds, independently of

the particular value selected for a_ in equation (50),
and leads to the following expression for CD for a

complete parabolic-arc body in a flow with free-
stream _h[ach mmlber 1.

c. = (_6/3) _ (90)

Oswatitsch and Keune mention the general con-

elusion stated above as a purely formal conse-
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FIOURE 40.--Pressure distribution on a parabolic-arc

body of fineness ratio 10, as obtained by direct calcula-

tion using the present theory and by use of the similarity

rule.
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FTG_RF. 4].--Variation of pressure-drag coefficient with

thickness ratio for a parabolic-arc body at Maeh num-

ber 1, as indicated by present theory and by other

theoretical results.
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FIGURE 42.---Variation of CD/r2 with thickness ratio for a

1}arabolic-arc body at Mach number 1, as indicated by

present theory and by other theorct.ical result,_.

quence of the theory, but suggest, that approval of

the result be withheld for bodies with a pointed
stern until a check is made to ascertain whether

the assumption of approximately constant accel-
eration would hold near the rear of such bodies.

It is evident from inspection of the theoretical or

experimental pressure distributions summarized

in figure 5 that this condition is not approached,

even in a qualitative sense, since bu/bx is positive

along the forward part of the body, but negative

along the rear part. The same property is ex-

hibited by the related results calculated by the
method of characteristics that are shown in

figure 36, as well as by similar results given in
reference 43 for additional examples. It is shown,

furthermore (refs. 25 and 26), that even the results

calculated by use of the linearized theory for sonic

flow display negative values for 5u/bx over the

rear of a parabolic-arc body in spite of the fact

that bu/Ox is replaced by a positive constant in
the derivation. Maeder and Thommen have

nevertheless advocated in references 25 and 26,

that equation (88) be used to calculate the pressure

drag of a parabolic-arc body of revolution in a
flow with free-stream 2%[ach number 1. It can be

seen that the values for C_ indicated by equation

(90) are much smaller than those indicated by the

present calculations.
The second additional sot of values for Co

included in figures 41 and 42 has been calculated

by a simple rule proposed in reference 43. It
states that the value for C_ for a l)ody of revolu-
tion in a flow with free-stream Math number 1

is equal to the sum of half the supersonic drag of

the forebody plus the full vahle of the supersonic

dr_g of the afterbody. The values for the super-

sonic drag are to be cal(.ulated in both instances

by means of the linearized theory of compressible
flow, and the line of demarcatiou between the fore-

body and afterbody is taken lo be the station of
maximum diameter. This rule is not established

by a deductive process, but is proposed as a

generalization, approximate in nature, of observa-

tions of specific results calculated for three different
bodies. Application of this rule to the specific case

of a parabolic-arc body of revolution leads to the

following expression for CD:

c. = (25/3) _ (9 ])
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It can be seen upon inspection of figures 41 and

42 that the values for Co indicated by equation

(91) are somewhat smaller than those indicated

by the more elaborate calculations of the present

investigation. It should be pointed out that this

comparison does not frilly represent an additional
test of the rule, however, since the parabolic-arc

body considered here is one of the three cases

used by Keune and Oswatitsch in the establish-

ment of the rule. It appears to the present

authors, in spite of tile moderate success of this

rule in the three cases considered to date, that the

final decision regarding the general applicability
of this rule should be withheht until either similar

comparisons are made for a much larger (.lass of

bodies or a better understanding of tile funda-
mental basis for tile rule is discovered.

Comparison with results for subsonic and
supersonic flow.--The remainder of this report is
concerned with a discussion of the relation be-

tween the results calculated for a parabolic-arc

body of revolution for Math number 1 and those
calculated for other Mach numbers. The results

for both pressure distribution and drag will be

considered, but attention is confined to the case

of a body of fineness ratio 10. Although all of

the results required to make similar comparisons
for bodies of other fineness ratios have not been

determined, it is presumed that the relations

among the results for various Mach numbers will
remain qualitatively the same. Figure 43 shows

a comparison of the pressure distribution cal-
culated for Much number 1 and those calculated

for the upper and lower critical Much numbers.
It can be seen that the results for Mach number 1

are qualitatively similar to those for the lower

critical Mach number along the forward part of

the body, and qualitatively similar to those for

the upper critical Mach number along the rear

part of the body. The results for various Maeh

numbers are displayed in a second manner in
figure 44 which shows the variation of the pressure
coefficient with Much number for several selected

points along the surface of tile body. Two addi-

tional curves are included on this plot to show the

variation with Math number of the pressure

coefficients corresponding to the occurrence of

sonic velocity (i.e., _ 1--_I=_ "_UlU==2][-_-C_-l).) at, the

midpoint and at tile nose of tile body. It can

be seen that the line segments for the surface

pressures could be connected by reasonably

smooth curves for points along the front part of

the body, but not for points along the rear part.
This situation is similar to that encountered in

the analysis of transonic flow around airfoils (see,

e.g., ref. 13) and it is known that the necessary

adjustment is achieved, in an inviscid flow, in a

discontinuous manner involving a shock wave

that extends to the surface of the body. The

presence of the boundary layer in a viscous flow

softens the discontinuous change indicated by the

inviscid theory, but the general behavior is other-
wise much the same. Tile actual existence of

such effects for the special case of a parabolic-arc

body of revolution is clearly demonstrated experi-
mentally by the data reported in references
l l and 14.

The variation with Much numl)cr of the pressure

drag coefficient for a parabolic-arc body of fineness

ratio 10 is shown in figure 45. The small circles

represent the values for the drag coefficient of
the complete body as indicated by the present

theory. The numerical values are

-2 I I l I 1

Cp_l/_iot_-'l----- _'-,..... - .... ;

0 ,

.I I --i

.2

.I .2 .3 .4 .5 .6 .7 .8 .9 1_)
X/I

FICURE 43.--Pressure distributions on a parabolic-arc

body of revolution at the upper and lower critical Mach

numbers and at Much number 1.

I
M=

1.21 1.22 1.23 1.25 1.30 [, 1.40

i

CD 0. 1153 0. 1149 0. 1146 0. 1142 0. 1133 _0. 1122

i

The dashed line of figure 45 that is adjacent to

the small circles represents the values calculated

by use of the folIowing expression that results

from both first- and second-order supersonic

slender-body theory.

C_ = (32/3) r _ (92)
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FIGURE 45.- Variation of the pressure-drag coefficient.

with Mach number for a parabolic-arc body of fineness

ratio 10, as indicated by present theory and by other

theoretical results.

It can be seen that the values indicated by the

present theory are slightly gn'eater than those
indicated by equation (92).

A second set of eabulated results, indicated

by small squares, is inchlded in figmre 45 to repre-
sent the contribution to the d,'ag that arises
from the forces on the front half of the complete

body. The numerical values arc

101 1 22 ] °3 ] `)5 ! ] 30 t 1 40 I

1049 .3 . :. . - . 7 . . " .]

The adjacent dashed line in |his figure represents
the values calculated by means of the following
relation provided by first-order slender-body

theory
G = (14!3),_ (93)

This result shows once again that only about half

of the drag rise of a half body occurs at Mach
numbers less than unity; whereas the previous
result shows that nearly all of the drag rise of a
complete parabolic-are body occurs in the same

range of Mach numbers.

A third set of etd(,ulaled results, indicat.('d by

sm,ll diamonds, is also i,eluded in this figure to
represent the contribution to the drag coefficien_
that arises from the forces on the front three-
fourths of a parabolic-arc body. The numerical
results are
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Tile adjacent dashed line represents the values

indicated by the first-order slender-body theory
which have been calculated with the aid of the

following expression :

C 9 ( 1 (_r) (94)D=_ _-2 1-- In 4

Although it is clear from this expression that the
drag is not independent of the free-stream Maeh

number, as in the case of the complete body and
also the half body, it can be seen from figure 45

that the effect is very small.

CONCLUDING REMARKS

It has been amply demonstrated in the preceding
pages that the approximate method for the solu-

tion of the nonlinear equations of transonic flow

theory described in reference 4 can also be ap-
plied to axisymmetrie flows. As in the ease of two-

dimensional flows, the results are shown, by com-
parison with experimental and other theoretical

results, to be of almost mlrprising accuracy eon-
sidering both the small pertm.ba.tion and slender-
body approximations inherent in the fimdamental

equations of the theory and the novel nature of

the procedures used to obtain a simple approxi-

mate solution of these equations.

The resuhs of this investigation are of interest

not. only because of the frequent use of a body of
revolution in aeronmitical design, but also becmlse

of the central role of the body of revolution in

applieqtions of the t.ransonie area and equivalence

ruh,s. The best known of these rides is probably

that for wave drag discovered ex-perimentally by

Whiteomb and announced in reference 1; but

recent developments (ref. 3 for a r6sum6) enable

the ready calculation of not only the drag, but also

the pressure distribution and other aerodynamic

properties of slender wings, bodies, wing-body
combinations, etc., provided that the pressure

distribution is known for the equivalent nonlifting

body of revolution having the same longitudinal
distribution of eross-section area.. Thus the

utility of these rules is greatly increased by the

availability of the methods described in this paper

for the calculation of the pressure distribution on

the equivalent body. Although no examples of

such an application are given in the present paper,

the results for a simple case involving a thin elliptic

cone that resembles a delta, wing are given in
reference 5.

While the development of a reliable theory for
th((prediction of tire aerodynamic properties of

bodies of revolution in transonic flow is a subject

primarily of interest to aerodynamieists, it would

seem to tim authors that the method of approxima-

lion and some of the results for specific applica-

tions might also be of interest to mathematicians

concerned with the solution of nonlinear partial

differential equations. It should be remarked in
this connection, that the method of approximation

is only described briefly and from a simple heuristic

point of view, in the present paper. Those inter-
ested in a timber discussion of the method from

a number of alternative points of view are referred

to the appendix of reference 4. The latter dis-

cussion is for two-dimensional flow, but the neces-

sary extension to axis3anmetric flow can bc ac-
complished directly withou! the introduction of

any new concepts. W]file it is hoped that the

discussion of the method of approximation pre-

sented in reference 4 is illuminating and helt)s to

make the procedure more plausible than does the

brief account presented herein, the underlying

reason for the success of the method remains only
incompletely understood from a mathematical

point of view. On the other hand, the demon-

strated ability of the method to nearly reproduce

the resuhs of available, but fat" more complicated,

theories and of experiments should be sufficient to

warrant further mathematical study.
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TABLE I. -RESULTS OF CALCULATIONS FOR PARABOLIC-ARC BODY OF FINENESS RATIO l0 AT

SUBCRITICAL MACIt NUMBERS (PURELY SUBSONIC FLOWS)

z/t
(a) 3I_=0.70 (b) 3I:o=0.80 (c) 2.I¢o=0.85 (d) 3,I¢o=0.90

!

O. O113249 --0. 125623 --O. 0001566 _ O. 213038 --0. 130,509 -0. 0001565 O, 222809 --0.133829

• 0313249 --.093099 --.0000166 , .151054 --.097572 --.0000165 .159998 --. 110641

.0513249 --.074023 --.0000041 , .115836 --.078039 --.0000041 .123868 --.080822

.0713249 --.059443 --.0000014 i .089485 ".062978 --.0000014 .096554 --.06545I
,

• 0913249 --.047376 --.0000006 I .068030 --.050412 --.(0(0006 .074102 --.052557

• 1113249 --. 037000 --. 0000003 .049830 --. 039528 --. 0000003 .054884 --. 041331

• 1313249 --. 027886 --. 0000002 . 034024 --. 029900 --. 0000002 . 038052 --. 031350

• 1513249 --. 0] 9773 --. 1010101 . 020095 --. 021274 i --. 1010001 . 023096 --. 0223(')5
.1713249 --.012495 --.(0(0101 .(07705 --.013486 --.(0(0(01 .009688 --.014213

• 1913249 --. 005932 l --" 003380 --. 00¢)422 --. 002401 --. 006785

• 2113249 0 I --. 013333 O --. 013333 0

• 23]3249 . 005366 --. 022282 . 005841 --. 023231 . (06198

• 2513249 .010216 .0(0(0(0 --. 030327 .011147 . (0(0(00 --. 032188 .011854

• 2713249 . 014589 . (0(0(00 --. 037546 015954 . (0(0(00 --. 040274 . 016999

• 2913249 .018517 . (0(0(00 --. 044001 .020290 . (0(00(0 --. 047548 .021659

• 3113249 .022023 . (0(0(00 --. 049743 .024179 .0(00(0 --. 054053 .025854

• 3313249 . 025130 . (000(00 --. 054813 . 027637 . (0(00(0 --. 059825 . 029598

• 3513249 . 027854 . 0(0(0(0 -- 059245 • 030679 . 0(0(000 --. 064894 . 032903

• 3713249 . 030209 . 100(D10 --. 063066 . 033317 . 0(00(0 --. 069283 . 035777

3913249 .032"205 . (00(0(0 I--. 066299 .035560 _ .0(0(000 --. 073(09 .03_228

• 4113249 . 03._52 . 00000(0 I --. 068963 . 037415 . (00(000 --. 076087 . 0402._9

• 4313249 .035158 . (0(0(00 --. 071070 .038887 . (0(0(00 --. 078530 .041875

• 4513249 .036127 .0(0(000 --. 072633 .039982 .0(0(000 --. 080344 .043078

• 4713249 .036764 . _ --. 073659 .040703 .0(0(000 --. 081537 .043871

• 4913249 .037071 .(001000 --. 074153 . 041050 . 0(0)(000 --. 082112 . 044253

• 5113249 .037049 • (00(0(0 --. 074118 .041025 .0(0)0(O --. 0g2071 .044226

• 5313249 . 036698 • (0(0(00 --. 073554 . 040629 . (0(0(00 --. 0_14] 4 . 043789

• 5513249 . 036018 . 00(0(00 [--. 072457 • 039859 . 000(000 --. 080139 • 042943

r

,,1U_ ,al_ c', ut U:_ A129 Cp

--0. 0001565 0. 229450 --0. 138118 --0. (001565 0. 238027

--•0000165 . 166136 --. 104643 --.(0(_165 . 174141

--. 0000041 . 129434 --. 084490 --. (0(0041 . 136770

--. 1010014 .101500 --. C68746 --.0000014 .108091

--. 0000006 .078392 --. 055449 --. 0000(06 .084175

--. 0000003 . 05_90 --. 043790 --. 0(0(003 . 063409

--. 0000002 . 040953 --. 033353 --. 0000002 . 044959

--. 0000001 .025278 --. 023891 --. 0000001 .028330

--.0000001 .011142 --. 015244 --.100(001 .013204

--. 101676 --. (07305 --. 000634

--.013333 0 --.013333

--. 023947 . (06726 --. 025002

• 00(0(00 --. 033602 . 012911 • 00(0(00 --. 035717

• (00(000 --. 0423C)5 .018584 . _ --. _)45534

• (0(0(00 --. 050286 .023763 . (00(0)(0 --. 054493

• (00(0(0 --. 057404 .02S462 . (000000 --. 062620

• (0(0(00 --. 063749 .032690 . (00(0(0 --. 069932

• (0(00(0 --. 069343 .03¢',450 . (000(00 --. 076437

. (0(0(00 --. 074204 .039745 . (0(00(0 --. 082139

! . _ --. 07_345 .042573 . (0(0(00 --. 087035

.(0(0000 --.081776 ,044931 .10101D0 -.091121

• 0to(D00 --. 084505 .046818 . _ '--. 094390

• (0(0000 --. 086536 .048228 . (0(0(00 --. 096836

• (0(0(00 --. 087873 .049160 . (0(0(00 --. 098452

i . (00(0(0 --. 0885 I8 . 049611 . 0(0(0(0 --. 099233

i .0(0(0(0 --.0F_472 i .049579 ,(0000(0 --.099178

• 00(0(00 --. 087736 .049004 . (0(0(00 --. 098286

• (0(0(00 --, 086307 .04g069 --. (WOO000 -. 096559
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TABLE I. -RESULTS OF CALCULATION'S FOR PARABOLIC-ARC BODY OF FINEN'ESS RATIO i0 AT

SUBCRITICAL MACII NUMBERS (PURELY SUBSONIC FLOWS)--Concluded

zf_
(e) 3f_ =0•92

," u/U_ ] A}29

| " __
I

-0, 0001565 0. 2422261

-. 0000165 .178129

-. 0000041 ,140461

--.070422 --.0000014 i .111443

--. 056936 --. 0000006 . 0_7150
--. 045071 --. 0000003 [ ,065972

--.034411 --._ ! .047074

--. 024708 --. 0000001 i . 029063

--.015804 ] --,0000001
I

*014324

O. 007593 --. 000059

]

i --. 013333

• 23132,t9 .007027 I i --. 025605
• 2513249 .013527 t . O00COO0 i--. 036948

•2713249, .019525t .0000000r- 04741_
_13249.I.0250371 .ooc_oi-.0._7042

.3113249 .030075[ .0000_ E-.0_,_847

.3313249 .034643 [ .0000000 [--.073838

.3513249 | •038739 t .0000000 [--_0,_1014

.3713249 I .042358 t .00000G0 '.--.087364

•045491 .0000000 l --. 092871
.048126 .0000000 1-- 097511

• 3913249 I

• 4113249 [

.43t3249 [ .050251 .0000000 1--.1012,50

,4513249 [ .051&50 [ .0000000 ]--.104080

• 4713249 . 052913 , 0000000 I--. 105957
.4913249 .053428 ,00000_ I--. t 06868

.5113249 . .0.rh3392 . _ I--. 106804

•5313249 I . 0529D3 . 0000000 T--. 105764
• 5513249 .051069 --. D(0)O)(D T--. 103750

I

(f) 3I_ =0.93

}.0113249 -0.140235

• 0313249 [ --.106f_27

• 0513249 [ --. 086335

.0713249

•0913249

.1113249

,1313249

.1513249

.17t3249

.1913249

• 2113249

C_
I

u/U_ I a/29 c_

-0.141412 -9,0001565 0,244616

--.107751 --.O000165 ] .I80357

--. 087372 --.0000041 .142534

--. 071370 --,0000014 113337

--.0577_2 --,0000006 ]088843!

--.045806 --.0000003 .067440]

--.035022 -.oooooo'21.o48297
--.025184 --.0000001 , .030916

--.016134 --.0000001 i .014984

--.007764 .000284

0 --. 013333

.007212 I --.025974

•013909 .0000000 --.037713

920119 .0000000 I-, 048605

,025858 .O ID0000

.031135 .0000000

.O35956 .0000000

-. 058683

--. 067967 ]
--. 07646.3

--. 084167 I
--. 091061 J

(g) 3[_ =0.934 0a) 2t[¢. =0.935

U/U_ A/29 C_, " u/Uco--A]--]_--- C_,

I

--.071773 --.0000014 .I14144 ] --,071876 --.0000014 .114351

--. 058144 --. 0(0)006 .089566 --, 058237 --. 0000006 .089752
I

-.046121 -. oooooo3 . o68070 -.046202 -.ooooo03 .0o8233
--. 03528.5 --. 0000092 .048824 _ --. 035353 --. 0000002 ,048959

-- 025390 -- 0000_1 031329 --. 025444 --. 000C001 .031436
--]010278 --.0000001 .01527l [ --.016315 --.0000001 ! .015346

--, 0078.39 .000434 --. 007859 .000473

0 --. 013333 0 --. 013,333

,007294 I I--.026138 !! .007316 I ]--.026181
.014082 i .0000002 1--.038058 .014127 .0000000 --.038148

• 020390 ] .0000000 ] --. 049147 .020461 .0000000 --. 049290

• 026237 ] . 000D000 [--. 059441 . 026338 . 0000000 --. 059642

031 4,  0000I-  9 iE0317070000000
•o365_5i .oooooooi-'°77721II .0367541 ooooooo1- o78o_1

041088 ; 0000000 [--. 085713 041299 | .0000000 --. 086135

,045137 ] --.(_30000 [ .092923 .045395 _ --.0000000 --.093440

• 0i87t8 [ -- O(DO000 --. 099325 .049031 I --. 0000000 --. 099951

051809 -- 0000000 --. 104875 .052186 [ --. 0000900 --. 105630

.054350 --.0000000 ]--.1095t5 •054833 [ --.0009000 --.110421

• 056390 --. 0000000 --. 113159 .056933 --. 0000001 -, 114245

.057779 --.0000(300 --.115690 I ,058424 --.0000001 --.I16979

• 058478 .0000001 --. 116968 .059206 --. 00(0D03 --. 118424
• 058428 ,0009005 --, 116876 I ,059153 (D00010 --. 118326

.057633 0000004 '--115424 05826l . 6000021 --. 116680

.056158 --.0000005k--.1t2737 I .056692 --.0000024f--,I13805

• 040315 .0000000

.044206 .00000_

• 047613 --.0000000 --.0971161

,050517 --.0000000 [--. 102292:

.052890 .O00CO00 --.106536

• 054703 I .0000000 --. 109786

.055922 [ ,0000000 --.111977

.056519 ,0000001 --.113051

• 05_77 .0000001 --.112974

.055796 t .0000000 --.]11749

.054518 I_ --.0(}00019 [--.109518
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TABLE III.--RESULTS OF CALCULATIONS FOR PARABOLIC-ARC BODY OF FINENESS RATIO 10 AT

MACII NUMBERS ABOVE TItE UPPER CRITICAL (PI__ELY SUPERSONIC FLOWS)

1
(a) 3f,_ =1.21 (b) 3I_ =1.22 (c)),f_1.23 [

zfl I

u/U_ _/29 C_ ul ( "o_ _129

0.0113249

• 0313249

• 0513249

• (;713249

• 0913249

• 1113249

• 1313249
• 1513249

• 1713249

• 1913249

,2113249

• 2313249

• _513249

• 2713249

• 2913249

•3113249

•3313249
, 3513249

• 3713249

• 3913249

• 4113249

• 4313249

• 4513249

• 4713249

• 4913249

• 5113249

• 5313249

• 5513249

• 5713249

•5913249

•6113249

,0313249

•6513249

•0713249

• 6913249

• 7113249

• 7313249

• 7513249

• 7713249

• 7913249

• 8113249

• 8313249

• 8513249

•8713249

•8913249

•9113249

•9313249

•9513249

•9713249

•9913249

--O. 122523

--. 110329

--. 099655

--. 089884

--. 080765

--. 072163

--. 063990

--. O661_

--. 048715

--, 041.M0

--. 034641

--. 02_,001

--.021606

--. 015450

--. 009524

--. 003827

.001644

•006886

•011898

.016675

•021211

•025499

•029527

•033287

• 036763

• 039942

• 042q07

• 045337

• 047512

• 049307

• 050603

• 051639

• 052109

•052063

.051453

•0.50225

•048315

•045649

•042137

•037671

.032118

•025306

.017016

• 006949

--. 005318

--. 020428

--. 039449

--. 0_442

--. 100636

--0. 0000057

--. 00OOO11

-. 0000004

--, 0000002

--. 6060001

--.60(0001

--. 0000000

--. 6000tX)O

. CO00000

. O00(X_

,6000000

,0600000

.0006000

.6000000

• 0000(0)0

• 0000000

--, 0000000

--. 0000000

--. O00CO00

--. 0000000

--• 0000000

--. 000(0)0

-- • 0000000

--.000(0)0

--. 0(0)0(0)0

--, 0000000

--. 0(_0000

--. 0000000

--. 00(0901

--. 0600001

--,0600001

--. _2

-. 6000604

-, 0000007

--. 0O60015

--. 0000036

--. 0000107
--. 0000475

O. 296838

• 185513

• 167101

• 159365

• 134808

• 120154

•106232

•092923

•080145

•067835

•055949

•044451

•033319

•022532
.012081

•001958

--. 007839

-, 017309

--. 026446

--. 035240

--, 043681

--. 051752

--. 059434

--. 066705

--. 073538
--. 079905

-, 0a5771

-. 095761
--, 099948

-, 103368 I
--. 106037 l

--, 1O7883 i

[ --. 108823
--. 108763

--. 107595

--. I05192

--, 101405

--, 096053

--. 08_922

--. 079743

--. O&q176

--. 053781

-. 035960

--. 013866

•013786

•049131

•096292

• I65728

u/U¢o At29

--0.119625 --0. 0000021

--. 108363 --. 0000006

--. 098195 --. 0000002

--. ('_WO --, 0060001

--. 079914 --. 6006001

--. 0715'20 --. O00O(O

--. 063520 --. 000O60O

--. 055863 --. 0000600

--,048514 --. 0006060

--. 041447

--. 034/'_II

--, 02_082

--. 021760 .6060060

--, 015666 ,0600000

--, 009796 .6060000

--. 004147 .

•001282 ,6060000

•006488 • 0600000

. O1 !470 • 6000000

•016221 .6006000
•020737 .6000000

•025007 .

•029024 --. 0000600

•032776 --. 6000600

,036249 --. 60C00O6

•O39428 --. 60(}(X'_

.042297 --. 000600

.044835 --. O60060O

•047022 --, 0000600

•048_31 --.0060000

• 050237 --. 06060('_

.0512O6 --. 00(0006

• 051703 --. 0_)0O60

•0,51687 --.

•0,51111 -,6000000

.04992I --. 06000_

•048054 --, 0006060

•045436 -. o60o600

•041976 --. 0060600

•037567 -- 60O6601

•032076 --. 0006001

•025334 --. 6006001

•017121 -. 0000002

• 007139 --, 00000(14

--. 60_32 --, 0000007

--. 020031 --. 0000015

--. 0389'20 --. (}0(E036

--. 063743 --. O600105

--, 099660 --. 00004¢)4

Cp

O. `201041

• 181582

• 164181

• 148139

• 133106

• 118870

• 105292

• 092273

• 079743

• 067648

• 055949

• 044615

• 033626

• 022966

.012625

• 002598

--.007115

--. 0165t3

--, 02558g

--. 034332

--, 042731

, --, 050770

--. 058428

--. 065683

I _ o7z_1o
-. 078877

--. 084751

-. 09oo92 I
--. 094780

--. 098997

-. 102456

-. 105171 I

-. 107O69
--. 108070

--, 108079 i

--. 106988 1

--. I04671

--. 100978

--. 095731

--. 088714

--. 079('_i0

--. 0r_232

-. 05399O

--, 036,339

--. 014438

• 012992

• 048073

• 094895

• 163777

--0.117275

--. 106645

.096881

--. 087752

--. 079127

--. 07092'2

-. 063080

-. 055557

--, 048324

--. 041358

--, 034641

--. 0281 60

--, 021906

--. O] 5873

--. 010055

--. 004453

• 000936

• 006107

• 011059

• 015786

• 02O2_2

• 024537

• 028542

•03228_
• 035756

• 03893,5

•041808

•044354

•046,552

•043370

•049800

• 05O791

•051314

• 05132_

• DSO7&5

• 049533

• 047808

• 045234

•041825

•037472

•032042

•025366

•017227

•007327

--. 004752

--. 019646

--. 03_09

--. 063074

--. 098746

--0.0060010

--. 0600603

-. 0(_0002

--.0060001

--. 0000001

--. 0000600

_. 0000000

_. (_00000

--. 6060600

=LI
• 178144

• 161552

• 146102

•13L532 ]• 117674

• 104412

.0910fi2 I
079364 p

.007471i
I .055949

.044771 I

• 6000000 .033918

• 0606060 . O23379

• 6006000 .013144

.00060o6 .603210

• 00O6060 --. 0O6423

• 0O60000 --. 015752

.600O660 --, 024768
• 0006060 --. 033462

--. 0000600 --. 041821

• O06060O I -. O49828

-. 6060000 f --.057464

-. o660600 -.064704

--. 6060000 --. 071524

--. 0060000 --. 077891

--. O660(_ --• 083773

--. 600(0)_ --. 089130

--. 6006060 --. 093840 ]
I

--. _ -, 098087 ]

--.6060000 --. 101583 i

--. OOO6060 --. 104342 1

--. O60OOO0 -, 100292

--. 0000900 --. 107352

--, 6006000 --, 107428

--,CO00000 --.106411

--._ --.104177

--. 0006000 -- 100575

--. 6060600 --. 095429
--. 0006001 --. 088523

-. 6060O61 --. 079591

--. 60000O1 --. 06_297

--. 0000002 --. 054202

--, 0000004 --. 036715

--. 0000007 --. O14998

--. 0O60015 .012221
--. 0000035 .047052

--, 0000104 .093557

--. 0000456 .161948

F
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TABLE III. -RESULTS OF CALCUI, ATIOXS FOR PARABOLIC-ARC BODY OF FINENESS RATIO 10 AT

MACII NUMBERS ABOVE TIlE UPPER CRITICAL (PURELY SUPERSONIC FLOWS) Concluded

zll

0.0113249

• 0313249

• 0513249

• 0713249

• 0913249

• 1113249

• 1313249

.1513249

• 1713249

• 1913249

• 2113249

• 2313249

• 2513249

• 2713249

• 2913249

• 3113249

• 3313249

• 3.513249

• 3713249

• 3913249

• 4113249

• 4313249

• 4513249

.4713249

• 4913249

• 5113249

• 5313249

• 5513249

• 5713249

• 5913249

• 6113249

• 6313249

• 6513249

•6713249

• 6913249

• 7113249

.7313249

• 7513249

• 7713249

• 7913249

• 8113240

• 8313249

• 8513249

• 8713249

• 8913249

• 9113249

• 9313249

• 95132.49

• 9713249

• 9913249

u� U¢o

-0. 113468

-. 103712

-. 094578

-. 085938

-. 077710

-. 069836

-. 062275

--. 054995

--. 047975
--.041194

-.o34r)41

--. 02q305

--. 022179

--, 016259

--. 010541

--. (105026

• 00O286

• 005392

• 0[0288

.014968

• 019425

• 0236,50

• 0'27(k34

• 031364

• 034826

• 038006

• 040886

• 043447

• 045666

• 047520

• 048979

• 050012

• 050585

• 050(')55

• 050177

• 049096

.047350
• 044864

• 041551

•037304

.031989

.025441

.017442

.007697

--. 004208

-• O189O5

--. 037437

--. 061815
--. 097063

(d) Af ¢o =1.25

A/29

-0. O000003

--. 00000O 1

--. 0600001

--• 0000000

--. 0000000

- •000(}(0_

--. 000000O

--. {)0000(_

-. 00000(_

. n00O0O0

.0000(_

.0O00O00

.0000000

•00000O0

.0000O0O

.000(009

.0O00O(D

.000(D00

--. 000_00_

--. 00(_000

--. 0000000

--.0000000

--.0000(}00

--. 0000000

--.0000(}00

-. 0000000

--. 00000{X)

--. 0000000

--. 00000(_

-. 000O(0
--. 0000001

-• 00O0001

-. 000_01

-. 0000002

-. 0000004

-. 0000007

--. 0000015

-. 0000035

--. 0000096

--. 0000446

O. 188727

• 172279

• 156946

• 142474

• 128697

• 115501

• 102802

• 090539

• 078665
.067144

• 055949

• 015060

• 034404

• 024151

.014115

• 0O4356

--. 005124

--. 014321

--. 02322`5

--. 031826

--. 040108

--. 048055

--. 055647

--, 062859

--. O69604
--. 676033

--. o81930

--. 087316

-. 092O70

--. 096374

--.099940

--.102784

--.104833

--, 106O06

--. 106210

--. 105337

--, 103261

--. 099835

--. 09488 I

--. 088187

--. 079486

--. 068446

--. 054732

--. 637456

--. 016085

.010739

.0451 O8

.091038

• 15_583

(e) 31¢o =1.30

,,/U¢o A/29

--0.106554 --0, 00O0O0l

--.098114 --. 0000O0O

--. 090040 --, 00000O0

--. 082282 --. 0O00000

--. 074805 --. 0090000

--. 067580 --. 0000060

--. 060587 --. 0000000

--. 053807 --. OD(D(W_

--. 047229 --.

--. 040843

--, 034641

--. 0_i18

--. 022772 .000O00O

--. 017100 .0O0(0)0

--.011602 .00000O0

--. 006281 .000O000
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